000 03471nam a22003975i 4500
001 277694
003 MX-SnUAN
005 20170705134159.0
007 cr nn 008mamaa
008 150903s2006 xxu| o |||| 0|eng d
020 _a9780387359243
_99780387359243
024 7 _a10.1007/9780387359243
_2doi
035 _avtls000331261
039 9 _a201509030430
_bVLOAD
_c201404121812
_dVLOAD
_c201404091543
_dVLOAD
_c201401311408
_dstaff
_y201401301205
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQ295
100 1 _aDragan, Vasile.
_eautor
_9300693
245 1 0 _aMathematical Methods in Robust Control of Linear Stochastic Systems /
_cby Vasile Dragan, Toader Morozan, Adrian-Mihail Stoica.
264 1 _aNew York, NY :
_bSpringer New York,
_c2006.
300 _axI, 312 páginas,
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aMathematical Concepts and Methods in Science and Engineering ;
_v50
500 _aSpringer eBooks
505 0 _aPreliminaries to Probability Theory and Stochastic Differential Equations -- Exponential Stability and Lyapunov-Type Linear Equations -- Structural Properties of Linear Stochastic Systems -- The Riccati Equations of Stochastic Control -- Linear Quadratic Control Problem for Linear Stochastic Systems -- Stochastic Version of the Bounded Real Lemma and Applications -- Robust Stabilization of Linear Stochastic Systems.
520 _aLinear stochastic systems are successfully used to provide mathematical models for real processes in fields such as aerospace engineering, communications, manufacturing, finance and economy. This monograph presents a useful methodology for the control of such stochastic systems with a focus on robust stabilization in the mean square, linear quadratic control, the disturbance attenuation problem, and robust stabilization with respect to dynamic and parametric uncertainty. Systems with both multiplicative white noise and Markovian jumping are covered. Key Features: -Covers the necessary pre-requisites from probability theory, stochastic processes, stochastic integrals and stochastic differential equations -Includes detailed treatment of the fundamental properties of stochastic systems subjected both to multiplicative white noise and to jump Markovian perturbations -Systematic presentation leads the reader in a natural way to the original results -New theoretical results accompanied by detailed numerical examples -Proposes new numerical algorithms to solve coupled matrix algebraic Riccati equations. The unique monograph is geared to researchers and graduate students in advanced control engineering, applied mathematics, mathematical systems theory and finance. It is also accessible to undergraduate students with a fundamental knowledge in the theory of stochastic systems.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aMorozan, Toader.
_eautor
_9300694
700 1 _aStoica, Adrian-Mihail.
_eautor
_9300695
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387305233
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-35924-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c277694
_d277694