000 03944nam a22003975i 4500
001 277779
003 MX-SnUAN
005 20160429153834.0
007 cr nn 008mamaa
008 150903s2005 xxu| o |||| 0|eng d
020 _a9780387345550
_99780387345550
024 7 _a10.1007/9780387345550
_2doi
035 _avtls000331168
039 9 _a201509030229
_bVLOAD
_c201404121755
_dVLOAD
_c201404091530
_dVLOAD
_c201401311405
_dstaff
_y201401301203
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA76.9.D343
100 1 _aWeiss, Sholom M.
_eautor
_9300849
245 1 0 _aText Mining :
_bPredictive Methods for Analyzing Unstructured Information /
_cby Sholom M. Weiss, Nitin Indurkhya, Tong Zhang, Fred J. Damerau.
264 1 _aNew York, NY :
_bSpringer New York,
_c2005.
300 _axii, 236 páginas,
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aOverview of Text Mining -- From Textual Information to Numerical Vectors -- Using Text for Prediction -- Information Retrieval and Text Mining -- Finding Structure in a Document Collection -- Looking for Information in Documents -- Case Studies -- Emerging Directions.
520 _aOne consequence of the pervasive use of computers is that most documents originate in digital form. Text mining—the process of searching, retrieving, and analyzing unstructured, natural-language text—is concerned with how to exploit the textual data embedded in these documents. Text Mining presents a comprehensive introduction and overview of the field, integrating related topics (such as artificial intelligence and knowledge discovery and data mining) and providing practical advice on how readers can use text-mining methods to analyze their own data. Emphasizing predictive methods, the book unifies all key areas in text mining: preprocessing, text categorization, information search and retrieval, clustering of documents, and information extraction. In addition, it identifies emerging directions for those looking to do research in the area. Some background in data mining is beneficial, but not essential. Topics and features: * Presents a comprehensive and easy-to-read introduction to text mining * Explores the application and utility of the methods, as well as the optimal techniques for specific scenarios * Provides several descriptive case studies that take readers from problem description to system deployment in the real world * Uses methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English) * Includes access to downloadable software (runs on any computer), as well as useful chapter-ending historical and bibliographical remarks, a detailed bibliography, and subject and author indexes This authoritative and highly accessible text, written by a team of authorities on text mining, develops the foundation concepts, principles, and methods needed to expand beyond structured, numeric data to automated mining of text samples. Researchers, computer scientists, and advanced undergraduates and graduates with work and interests in data mining, machine learning, databases, and computational linguistics will find the work an essential resource.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aIndurkhya, Nitin.
_eautor
_9300850
700 1 _aZhang, Tong.
_eautor
_9300851
700 1 _aDamerau, Fred J.
_eautor
_9300852
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387954332
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-34555-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c277779
_d277779