000 | 03302nam a22003735i 4500 | ||
---|---|---|---|
001 | 277832 | ||
003 | MX-SnUAN | ||
005 | 20160429153836.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2006 xxu| o |||| 0|eng d | ||
020 |
_a9780387306230 _99780387306230 |
||
024 | 7 |
_a10.1007/0387306234 _2doi |
|
035 | _avtls000330856 | ||
039 | 9 |
_a201509030726 _bVLOAD _c201404120537 _dVLOAD _c201404090318 _dVLOAD _c201401311354 _dstaff _y201401301156 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA276-280 | |
100 | 1 |
_aWasserman, Larry. _eautor _9300950 |
|
245 | 1 | 0 |
_aAll of Nonparametric Statistics / _cby Larry Wasserman. |
264 | 1 |
_aNew York, NY : _bSpringer New York, _c2006. |
|
300 |
_axii, 268 páginas, 52 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringer Texts in Statistics, _x1431-875X |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aEstimating the CDF and Statistical Functionals -- The Bootstrap and the Jackknife -- Smoothing: General Concepts -- Nonparametric Regression -- Density Estimation -- Normal Means and Minimax Theory -- Nonparametric Inference Using Orthogonal Functions -- Wavelets and Other Adaptive Methods -- Other Topics. | |
520 | _aThe goal of this text is to provide the reader with a single book where they can find a brief account of many, modern topics in nonparametric inference. The book is aimed at Master's level or Ph.D. level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. This text covers a wide range of topics including: the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book has a mixture of methods and theory. Larry Wasserman is Professor of Statistics at Carnegie Mellon University and a member of the Center for Automated Learning and Discovery in the School of Computer Science. His research areas include nonparametric inference, asymptotic theory, multiple testing, and applications to astrophysics, bioinformatics and genetics. He is the 1999 winner of the Committee of Presidents of Statistical Societies Presidents' Award and the 2002 winner of the Centre de recherches mathématiques de Montreal-Statistical Society of Canada Prize in Statistics. He is Associate Editor of The Journal of the American Statistical Association and The Annals of Statistics. He is a fellow of the American Statistical Association and of the Institute of Mathematical Statistics. He is the author of All of Statistics: A Concise Course in Statistical Inference (Springer, 2003). | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780387251455 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-387-30623-4 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c277832 _d277832 |