000 03302nam a22003735i 4500
001 277832
003 MX-SnUAN
005 20160429153836.0
007 cr nn 008mamaa
008 150903s2006 xxu| o |||| 0|eng d
020 _a9780387306230
_99780387306230
024 7 _a10.1007/0387306234
_2doi
035 _avtls000330856
039 9 _a201509030726
_bVLOAD
_c201404120537
_dVLOAD
_c201404090318
_dVLOAD
_c201401311354
_dstaff
_y201401301156
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA276-280
100 1 _aWasserman, Larry.
_eautor
_9300950
245 1 0 _aAll of Nonparametric Statistics /
_cby Larry Wasserman.
264 1 _aNew York, NY :
_bSpringer New York,
_c2006.
300 _axii, 268 páginas, 52 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Texts in Statistics,
_x1431-875X
500 _aSpringer eBooks
505 0 _aEstimating the CDF and Statistical Functionals -- The Bootstrap and the Jackknife -- Smoothing: General Concepts -- Nonparametric Regression -- Density Estimation -- Normal Means and Minimax Theory -- Nonparametric Inference Using Orthogonal Functions -- Wavelets and Other Adaptive Methods -- Other Topics.
520 _aThe goal of this text is to provide the reader with a single book where they can find a brief account of many, modern topics in nonparametric inference. The book is aimed at Master's level or Ph.D. level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. This text covers a wide range of topics including: the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book has a mixture of methods and theory. Larry Wasserman is Professor of Statistics at Carnegie Mellon University and a member of the Center for Automated Learning and Discovery in the School of Computer Science. His research areas include nonparametric inference, asymptotic theory, multiple testing, and applications to astrophysics, bioinformatics and genetics. He is the 1999 winner of the Committee of Presidents of Statistical Societies Presidents' Award and the 2002 winner of the Centre de recherches mathématiques de Montreal-Statistical Society of Canada Prize in Statistics. He is Associate Editor of The Journal of the American Statistical Association and The Annals of Statistics. He is a fellow of the American Statistical Association and of the Institute of Mathematical Statistics. He is the author of All of Statistics: A Concise Course in Statistical Inference (Springer, 2003).
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387251455
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-387-30623-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c277832
_d277832