000 | 02924nam a22003735i 4500 | ||
---|---|---|---|
001 | 278015 | ||
003 | MX-SnUAN | ||
005 | 20170705134200.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2006 xxu| o |||| 0|eng d | ||
020 |
_a9780387302621 _99780387302621 |
||
024 | 7 |
_a10.1007/038730262-X _2doi |
|
035 | _avtls000330817 | ||
039 | 9 |
_a201509030725 _bVLOAD _c201404120535 _dVLOAD _c201404090316 _dVLOAD _c201401311352 _dstaff _y201401301155 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQ334-342 | |
100 | 1 |
_aLawry, Jonathan. _eautor _9301309 |
|
245 | 1 | 0 |
_aModelling and Reasoning with Vague Concepts / _cby Jonathan Lawry. |
264 | 1 |
_aBoston, MA : _bSpringer US, _c2006. |
|
300 |
_axxv, 246 páginas, _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aStudies in Computational Intelligence, _x1860-949X ; _v12 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aVague Concepts and Fuzzy Sets -- Label Semantics -- Multi-Dimensional and Multi-Instance Label Semantics -- Information from Vague Concepts -- Learning Linguistic Models from Data -- Fusing Knowledge and Data -- Non-Additive Appropriateness Measures. | |
520 | _aVagueness is central to the flexibility and robustness of natural language descriptions. Vague concepts are robust to the imprecision of our perceptions, while still allowing us to convey useful, and sometimes vital, information. The study of vagueness in Artificial Intelligence (AI) is therefore motivated by the desire to incorporate this robustness and flexibility into intelligent computer systems. Such a goal, however, requires a formal model of vague concepts that will allow us to quantify and manipulate the uncertainty resulting from their use as a means of passing information between autonomous agents. This volume outlines a formal representation framework for modelling and reasoning with vague concepts in Artificial Intelligence. The new calculus has many applications, especially in automated reasoning, learning, data analysis and information fusion. This book gives a rigorous introduction to label semantics theory, illustrated with many examples, and suggests clear operational interpretations of the proposed measures. It also provides a detailed description of how the theory can be applied in data analysis and information fusion based on a range of benchmark problems. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780387290560 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-387-30262-X _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c278015 _d278015 |