000 03531nam a22003855i 4500
001 278086
003 MX-SnUAN
005 20160429153848.0
007 cr nn 008mamaa
008 150903s2008 xxu| o |||| 0|eng d
020 _a9780387380322
_99780387380322
024 7 _a10.1007/9780387380322
_2doi
035 _avtls000331370
039 9 _a201509030234
_bVLOAD
_c201404121828
_dVLOAD
_c201404091556
_dVLOAD
_c201401311412
_dstaff
_y201401301208
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA241-247.5
100 1 _aJorgenson, Jay.
_eautor
_9301413
245 1 4 _aThe Heat Kernel and Theta Inversion on SL2(C) /
_cby Jay Jorgenson, Serge Lang.
264 1 _aNew York, NY :
_bSpringer New York,
_c2008.
300 _ax, 319 páginas,
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Monographs in Mathematics,
_x1439-7382
500 _aSpringer eBooks
505 0 _aGaussians, Spherical Inversion, and the Heat Kernel -- Spherical Inversion on SL2(C) -- The Heat Gaussian and Heat Kernel -- QED, LEG, Transpose, and Casimir -- Enter ?: The General Trace Formula -- Convergence and Divergence of the Selberg Trace -- The Cuspidal and Noncuspidal Traces -- The Heat Kernel on ?\G/K -- The Fundamental Domain -- ?-Periodization of the Heat Kernel -- Heat Kernel Convolution on (?\G/K) -- Fourier-Eisenstein Eigenfunction Expansions -- The Tube Domain for ?? -- The ?/U-Fourier Expansion of Eisenstein Series -- Adjointness Formula and the ?\G-Eigenfunction Expansion -- The Eisenstein-Cuspidal Affair -- The Eisenstein Y-Asymptotics -- The Cuspidal Trace Y-Asymptotics -- Analytic Evaluations.
520 _aThe present monograph develops the fundamental ideas and results surrounding heat kernels, spectral theory, and regularized traces associated to the full modular group acting on SL2(C). The authors begin with the realization of the heat kernel on SL2(C) through spherical transform, from which one manifestation of the heat kernel on quotient spaces is obtained through group periodization. From a different point of view, one constructs the heat kernel on the group space using an eigenfunction, or spectral, expansion, which then leads to a theta function and a theta inversion formula by equating the two realizations of the heat kernel on the quotient space. The trace of the heat kernel diverges, which naturally leads to a regularization of the trace by studying Eisenstein series on the eigenfunction side and the cuspidal elements on the group periodization side. By focusing on the case of SL2(Z[i]) acting on SL2(C), the authors are able to emphasize the importance of specific examples of the general theory of the general Selberg trace formula and uncover the second step in their envisioned "ladder" of geometrically defined zeta functions, where each conjectured step would include lower level zeta functions as factors in functional equations.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aLang, Serge.
_eautor
_9301414
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387380315
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-38032-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c278086
_d278086