000 | 03531nam a22003855i 4500 | ||
---|---|---|---|
001 | 278086 | ||
003 | MX-SnUAN | ||
005 | 20160429153848.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2008 xxu| o |||| 0|eng d | ||
020 |
_a9780387380322 _99780387380322 |
||
024 | 7 |
_a10.1007/9780387380322 _2doi |
|
035 | _avtls000331370 | ||
039 | 9 |
_a201509030234 _bVLOAD _c201404121828 _dVLOAD _c201404091556 _dVLOAD _c201401311412 _dstaff _y201401301208 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA241-247.5 | |
100 | 1 |
_aJorgenson, Jay. _eautor _9301413 |
|
245 | 1 | 4 |
_aThe Heat Kernel and Theta Inversion on SL2(C) / _cby Jay Jorgenson, Serge Lang. |
264 | 1 |
_aNew York, NY : _bSpringer New York, _c2008. |
|
300 |
_ax, 319 páginas, _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aSpringer Monographs in Mathematics, _x1439-7382 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aGaussians, Spherical Inversion, and the Heat Kernel -- Spherical Inversion on SL2(C) -- The Heat Gaussian and Heat Kernel -- QED, LEG, Transpose, and Casimir -- Enter ?: The General Trace Formula -- Convergence and Divergence of the Selberg Trace -- The Cuspidal and Noncuspidal Traces -- The Heat Kernel on ?\G/K -- The Fundamental Domain -- ?-Periodization of the Heat Kernel -- Heat Kernel Convolution on (?\G/K) -- Fourier-Eisenstein Eigenfunction Expansions -- The Tube Domain for ?? -- The ?/U-Fourier Expansion of Eisenstein Series -- Adjointness Formula and the ?\G-Eigenfunction Expansion -- The Eisenstein-Cuspidal Affair -- The Eisenstein Y-Asymptotics -- The Cuspidal Trace Y-Asymptotics -- Analytic Evaluations. | |
520 | _aThe present monograph develops the fundamental ideas and results surrounding heat kernels, spectral theory, and regularized traces associated to the full modular group acting on SL2(C). The authors begin with the realization of the heat kernel on SL2(C) through spherical transform, from which one manifestation of the heat kernel on quotient spaces is obtained through group periodization. From a different point of view, one constructs the heat kernel on the group space using an eigenfunction, or spectral, expansion, which then leads to a theta function and a theta inversion formula by equating the two realizations of the heat kernel on the quotient space. The trace of the heat kernel diverges, which naturally leads to a regularization of the trace by studying Eisenstein series on the eigenfunction side and the cuspidal elements on the group periodization side. By focusing on the case of SL2(Z[i]) acting on SL2(C), the authors are able to emphasize the importance of specific examples of the general theory of the general Selberg trace formula and uncover the second step in their envisioned "ladder" of geometrically defined zeta functions, where each conjectured step would include lower level zeta functions as factors in functional equations. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aLang, Serge. _eautor _9301414 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780387380315 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-38032-2 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c278086 _d278086 |