000 | 03055nam a22003855i 4500 | ||
---|---|---|---|
001 | 278096 | ||
003 | MX-SnUAN | ||
005 | 20160429153848.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2006 xxu| o |||| 0|eng d | ||
020 |
_a9780387308067 _99780387308067 |
||
024 | 7 |
_a10.1007/0387308067 _2doi |
|
035 | _avtls000330873 | ||
039 | 9 |
_a201509030726 _bVLOAD _c201404120540 _dVLOAD _c201404090321 _dVLOAD _c201401311354 _dstaff _y201401301156 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA150-272 | |
100 | 1 |
_aKoppitz, J. _eautor _9301429 |
|
245 | 1 | 0 |
_aM-Solid Varieties of Algebras / _cby J. Koppitz, K. Denecke. |
264 | 1 |
_aBoston, MA : _bSpringer US, _c2006. |
|
300 |
_axiii, 341 páginas, _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aAdvances in Mathematics ; _v10 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aBasic Concepts -- Closure Operators and Lattices -- M-Hyperidentities and M-solid Varieties -- Hyperidentities and Clone Identities -- Solid Varieties of Arbitrary Type -- Monoids of Hypersubstitutions -- M-Solid Varieties of Semigroups -- M-solid Varieties of Semirings. | |
520 | _aM-Solid Varieties of Algebras provides a complete and systematic introduction to the fundamentals of the hyperequational theory of universal algebra, offering the newest results on M-solid varieties of semirings and semigroups. The book aims to develop the theory of M-solid varieties as a system of mathematical discourse that is applicable in several concrete situations. It applies the general theory to two classes of algebraic structures, semigroups and semirings. Both these varieties and their subvarieties play an important role in computer science. A unique feature of this book is the use of Galois connections to integrate different topics. Galois connections form the abstract framework not only for classical and modern Galois theory, involving groups, fields and rings, but also for many other algebraic, topological, ordertheoretical, categorical and logical theories. This concept is used throughout the whole book, along with the related topics of closure operators, complete lattices, Galois closed subrelations and conjugate pairs of completely additive closure operators. Audience This book is intended for researchers in the fields of universal algebra, semigroups, and semirings; researchers in theoretical computer science; and students and lecturers in these fields. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aDenecke, K. _eautor _9301430 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780387308043 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-387-30806-7 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c278096 _d278096 |