000 03055nam a22003855i 4500
001 278096
003 MX-SnUAN
005 20160429153848.0
007 cr nn 008mamaa
008 150903s2006 xxu| o |||| 0|eng d
020 _a9780387308067
_99780387308067
024 7 _a10.1007/0387308067
_2doi
035 _avtls000330873
039 9 _a201509030726
_bVLOAD
_c201404120540
_dVLOAD
_c201404090321
_dVLOAD
_c201401311354
_dstaff
_y201401301156
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA150-272
100 1 _aKoppitz, J.
_eautor
_9301429
245 1 0 _aM-Solid Varieties of Algebras /
_cby J. Koppitz, K. Denecke.
264 1 _aBoston, MA :
_bSpringer US,
_c2006.
300 _axiii, 341 páginas,
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aAdvances in Mathematics ;
_v10
500 _aSpringer eBooks
505 0 _aBasic Concepts -- Closure Operators and Lattices -- M-Hyperidentities and M-solid Varieties -- Hyperidentities and Clone Identities -- Solid Varieties of Arbitrary Type -- Monoids of Hypersubstitutions -- M-Solid Varieties of Semigroups -- M-solid Varieties of Semirings.
520 _aM-Solid Varieties of Algebras provides a complete and systematic introduction to the fundamentals of the hyperequational theory of universal algebra, offering the newest results on M-solid varieties of semirings and semigroups. The book aims to develop the theory of M-solid varieties as a system of mathematical discourse that is applicable in several concrete situations. It applies the general theory to two classes of algebraic structures, semigroups and semirings. Both these varieties and their subvarieties play an important role in computer science. A unique feature of this book is the use of Galois connections to integrate different topics. Galois connections form the abstract framework not only for classical and modern Galois theory, involving groups, fields and rings, but also for many other algebraic, topological, ordertheoretical, categorical and logical theories. This concept is used throughout the whole book, along with the related topics of closure operators, complete lattices, Galois closed subrelations and conjugate pairs of completely additive closure operators. Audience This book is intended for researchers in the fields of universal algebra, semigroups, and semirings; researchers in theoretical computer science; and students and lecturers in these fields.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aDenecke, K.
_eautor
_9301430
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387308043
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-387-30806-7
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c278096
_d278096