000 03220nam a22003735i 4500
001 278104
003 MX-SnUAN
005 20160429153849.0
007 cr nn 008mamaa
008 150903s2007 xxu| o |||| 0|eng d
020 _a9780387329352
_99780387329352
024 7 _a10.1007/9780387329352
_2doi
035 _avtls000331010
039 9 _a201509030211
_bVLOAD
_c201404121739
_dVLOAD
_c201404091516
_dVLOAD
_c201401311359
_dstaff
_y201401301159
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aTK1001-1841
100 1 _aAjjarapu, Venkataramana.
_eeditor.
_9301443
245 1 0 _aComputational Techniques for Voltage Stability Assessment and Control /
_cedited by Venkataramana Ajjarapu.
264 1 _aBoston, MA :
_bSpringer US,
_c2007.
300 _axI, 250 páginas,
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aPower Electronics and Power Systems
500 _aSpringer eBooks
505 0 _aNumerical Bifurcation Techniques -- Continuation Power Flow -- Sensitivity Analysis for Voltage Stability -- Voltage Stability Margin Boundary Tracing -- Time Domain Simulation.
520 _aVoltage stability is a critical issue in the secure operation of the restructured power system. Poor voltage conditions lead not only to voltage collapse in the system but can also induce oscillatory instability that may cause a loss of synchronism. A critical question is how to estimate the distance to voltage instability given the present state of the system. Computational Techniques for Voltage Stability Assessment and Control brings together in one place the computational tools necessary to compute the voltage stability margin. The basic computational tool for tracing the P-V curve and equilibria tracing is the continuation power flow. This technique as well as the algorithm is explained in detail by the author. Sensitivity of the voltage stability margin to various parameters in the system is discussed extensively both theoretically and in a numerical context. The key concepts of both saddle node and Hopf bifurcation are covered. These are illustrated with the differential-algebraic equation (DAE) model of the system. The model is complex enough to include Load Tap-Changing transformers as well as HVDC models. The dynamic model of the generating unit includes the exciter since it plays a crucial role in voltage stability. A promising decoupled dynamic simulation technique is introduced for time domain analysis. Computational Techniques for Voltage Stability Assessment and Control provides the computational tools and algorithms needed for development of on-line voltage security assessment
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387260808
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-32935-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c278104
_d278104