000 | 02988nam a22003855i 4500 | ||
---|---|---|---|
001 | 278185 | ||
003 | MX-SnUAN | ||
005 | 20160429153853.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2006 xxu| o |||| 0|eng d | ||
020 |
_a9780387334165 _99780387334165 |
||
024 | 7 |
_a10.1007/0387334165 _2doi |
|
035 | _avtls000331060 | ||
039 | 9 |
_a201509030727 _bVLOAD _c201404120603 _dVLOAD _c201404090343 _dVLOAD _c201401311401 _dstaff _y201401301200 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aHD30.23 | |
100 | 1 |
_aAlba, Enrique. _eeditor. _9301610 |
|
245 | 1 | 0 |
_aMetaheuristic Procedures for Training Neutral Networks / _cedited by Enrique Alba, Rafael Martí. |
264 | 1 |
_aBoston, MA : _bSpringer US, _c2006. |
|
300 |
_axI, 250 páginas, _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aOperations Research/Computer Science Interfaces Series, _x1387-666X ; _v36 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aClassical Training Methods -- Local Search Based Methods -- Simulated Annealing -- Tabu Search -- Variable Neighbourhood Search -- Population Based Methods -- Estimation of Distribution Algorithms -- Genetic Algorithms -- Scatter Search -- Other Advanced Methods -- Ant Colony Optimization -- Cooperative Coevolutionary Methods -- Greedy Randomized Adaptive Search Procedures -- Memetic Algorithms. | |
520 | _aMetaheuristic Procedures For Training Neural Networks provides successful implementations of metaheuristic methods for neural network training. Moreover, the basic principles and fundamental ideas given in the book will allow the readers to create successful training methods on their own. Apart from Chapter 1, which reviews classical training methods, the chapters are divided into three main categories. The first one is devoted to local search based methods, including Simulated Annealing, Tabu Search, and Variable Neighborhood Search. The second part of the book presents population based methods, such as Estimation Distribution algorithms, Scatter Search, and Genetic Algorithms. The third part covers other advanced techniques, such as Ant Colony Optimization, Co-evolutionary methods, GRASP, and Memetic algorithms. Overall, the book's objective is engineered to provide a broad coverage of the concepts, methods, and tools of this important area of ANNs within the realm of continuous optimization. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aMartí, Rafael. _eeditor. _9301611 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780387334158 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-387-33416-5 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c278185 _d278185 |