000 02988nam a22003855i 4500
001 278185
003 MX-SnUAN
005 20160429153853.0
007 cr nn 008mamaa
008 150903s2006 xxu| o |||| 0|eng d
020 _a9780387334165
_99780387334165
024 7 _a10.1007/0387334165
_2doi
035 _avtls000331060
039 9 _a201509030727
_bVLOAD
_c201404120603
_dVLOAD
_c201404090343
_dVLOAD
_c201401311401
_dstaff
_y201401301200
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aHD30.23
100 1 _aAlba, Enrique.
_eeditor.
_9301610
245 1 0 _aMetaheuristic Procedures for Training Neutral Networks /
_cedited by Enrique Alba, Rafael Martí.
264 1 _aBoston, MA :
_bSpringer US,
_c2006.
300 _axI, 250 páginas,
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aOperations Research/Computer Science Interfaces Series,
_x1387-666X ;
_v36
500 _aSpringer eBooks
505 0 _aClassical Training Methods -- Local Search Based Methods -- Simulated Annealing -- Tabu Search -- Variable Neighbourhood Search -- Population Based Methods -- Estimation of Distribution Algorithms -- Genetic Algorithms -- Scatter Search -- Other Advanced Methods -- Ant Colony Optimization -- Cooperative Coevolutionary Methods -- Greedy Randomized Adaptive Search Procedures -- Memetic Algorithms.
520 _aMetaheuristic Procedures For Training Neural Networks provides successful implementations of metaheuristic methods for neural network training. Moreover, the basic principles and fundamental ideas given in the book will allow the readers to create successful training methods on their own. Apart from Chapter 1, which reviews classical training methods, the chapters are divided into three main categories. The first one is devoted to local search based methods, including Simulated Annealing, Tabu Search, and Variable Neighborhood Search. The second part of the book presents population based methods, such as Estimation Distribution algorithms, Scatter Search, and Genetic Algorithms. The third part covers other advanced techniques, such as Ant Colony Optimization, Co-evolutionary methods, GRASP, and Memetic algorithms. Overall, the book's objective is engineered to provide a broad coverage of the concepts, methods, and tools of this important area of ANNs within the realm of continuous optimization.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aMartí, Rafael.
_eeditor.
_9301611
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387334158
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-387-33416-5
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c278185
_d278185