000 02878nam a22003615i 4500
001 278341
003 MX-SnUAN
005 20160429153859.0
007 cr nn 008mamaa
008 150903s2005 xxu| o |||| 0|eng d
020 _a9780387243498
_9978-0-387-24349-8
024 7 _a10.1007/b105200
_2doi
035 _avtls000330058
039 9 _a201509031109
_bVLOAD
_c201405070456
_dVLOAD
_c201401311328
_dstaff
_c201401311152
_dstaff
_y201401291446
_zstaff
_wmsplit0.mrc
_x478
050 4 _aQA402.5-402.6
100 1 _aSnyman, Jan A.
_eautor
_9301909
245 1 0 _aPractical Mathematical Optimization :
_bAn Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms /
_cby Jan A. Snyman.
264 1 _aBoston, MA :
_bSpringer US,
_c2005.
300 _aXX, 258 páginas,
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aApplied Optimization,
_x1384-6485 ;
_v97
500 _aSpringer eBooks
505 0 _aLine Search Descent Methods for Unconstrained Minimization -- Standard Methods for Constrained Optimization -- New Gradient-Based Trajectory and Approximation Methods -- Example Problems -- Some Theorems.
520 _aThis book presents basic optimization principles and gradient-based algorithms to a general audience, in a brief and easy-to-read form without neglecting rigour. The work should enable the professional to apply optimization theory and algorithms to his own particular practical field of interest, be it engineering, physics, chemistry, or business economics. Most importantly, for the first time in a relatively brief and introductory work, due attention is paid to the difficulties—such as noise, discontinuities, expense of function evaluations, and the existence of multiple minima—that often unnecessarily inhibit the use of gradient-based methods. In a separate chapter on new gradient-based methods developed by the author and his coworkers, it is shown how these difficulties may be overcome without losing the desirable features of classical gradient-based methods. Audience It is intended that this book be used in senior- to graduate-level semester courses in optimization, as offered in mathematics, engineering, computer science, and operations research departments, and also to be useful to practising professionals in the workplace.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387243481
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b105200
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c278341
_d278341