000 05300nam a22003735i 4500
001 278358
003 MX-SnUAN
005 20160429153900.0
007 cr nn 008mamaa
008 150903s2005 xxu| o |||| 0|eng d
020 _a9780387262611
_9978-0-387-26261-1
024 7 _a10.1007/b137232
_2doi
035 _avtls000330266
039 9 _a201509031114
_bVLOAD
_c201405070505
_dVLOAD
_c201401311335
_dstaff
_c201401311159
_dstaff
_y201401291451
_zstaff
_wmsplit0.mrc
_x686
050 4 _aTA342-343
100 1 _aSteinmann, Paul.
_eeditor.
_9301942
245 1 0 _aMechanics of Material Forces /
_cedited by Paul Steinmann, Gérard A. Maugin.
264 1 _aBoston, MA :
_bSpringer US,
_c2005.
300 _aXV, 337 páginas,
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aAdvances in Mechanics and Mathematics ;
_v11
500 _aSpringer eBooks
505 0 _a4d Formalism -- On Establishing Balance and Conservation Laws in Elastodynamics -- From Mathematical Physics to Engineering Science -- Evolving Interfaces -- The Unifying Nature of the Configurational Force Balance -- Generalized Stefan Models -- Explicit Kinetic Relation from “First Principles” -- Growth & Biomechanics -- Surface and Bulk Growth Unified -- Mechanical and Thermodynamical Modelling of Tissue Growth Using Domain Derivation Techniques -- Material Forces in the Context of Biotissue Remodelling -- Numerical Aspects -- Error-Controlled Adaptive Finite Element Methods in Nonlinear Elastic Fracture Mechanics -- Material Force Method. Continuum Damage & Thermo-Hyperelasticity -- Discrete Material Forces in the Finite Element Method -- Computational Spatial and Material Settings of Continuum Mechanics. An Arbitrary Lagrangian Eulerian Formulation -- Dislocations & Peach-Koehler-Forces -- Self-Driven continuous Dislocations and Growth -- Role of the Non-Riemannian Plastic Connection in Finite Elasto-Plasticity with Continuous Distribution of Dislocations -- Peach-Koehler Forces within the Theory of Nonlocal Elasticity -- Multiphysics & Microstructure -- On the Material Energy-Momentum Tensor in Electrostatics and Magnetostatics -- Continuum Thermodynamic and Variational Models for Continua with Microstructure and Material Inhomogeneity -- A Crystal Structure-Based Eigentransformation and its Work-Conjugate Material Stress -- Fracture & Structural Optimization -- Teaching Fracture Mechanics Within the Theory of Strength-of-Materials -- Configurational Thermomech-Anics and Crack Driving Forces -- Structural Optimization by Material Forces -- On Structural Optimisation and Configurational Mechanics -- Path Integrals -- Configurational Forces and the Propagation of a Circular Crack in an Elastic Body -- Thermoplastic M Integral and Path Domain Dependence -- Delamination & Discontinuities -- Peeling Tapes -- Stability and Bifurcation with Moving Discontinuities -- On Fracture Modelling Based on Inverse Strong Discontinuities -- Interfaces & Phase Transition -- Maxwell’s Relation for Isotropic Bodies -- Driving Force in Simulation of Phase Transition Front Propagation -- Modeling of the Thermal Treatment of Steel With Phase Changes -- Plasticity & Damage -- Configurational Stress Tensor in Anisotropic Ductile Continuum Damage Mechanics -- Some Class of SG Continuum Models to Connect Various Length Scales in Plastic Deformation -- Weakly Nonlocal Theories of Damage and Plasticity Based on Balance of Dissipative Material Forces.
520 _aIn this single volume the reader will find all recent developments in one of the most promising and rapidly expanding branches of continuum mechanics, the mechanics of material forces. The book covers both theoretical and numerical developments. Conceptually speaking, common continuum mechanics in the sense of Newton—which gives rise to the notion of spatial (mechanical) forces—considers the response to variations of spatial placements of "physical particles” with respect to the ambient space, whereas continuum mechanics in the sense of Eshelby—which gives rise to the notion of material (configurational) forces—is concerned with the response to variations of material placements of "physical particles” with respect to the ambient material. Well-known examples of material forces are driving forces on defects like the Peach-Koehler forece, the J-Integral in fracture mechanics, and energy release. The consideration of material forces goes back to the works of Eshelby, who investigated forces on defects; therefore this area of continuum mechanics is sometimes denoted Eshelbian mechanics. Audience This book is suitable for civil and mechanical engineers, physicists and applied mathematicians.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aMaugin, Gérard A.
_eeditor.
_9301943
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387262604
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b137232
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c278358
_d278358