000 03466nam a22003855i 4500
001 278367
003 MX-SnUAN
005 20160429153901.0
007 cr nn 008mamaa
008 150903s2005 xxu| o |||| 0|eng d
020 _a9780387276052
_9978-0-387-27605-2
024 7 _a10.1007/038727605-X
_2doi
035 _avtls000330431
039 9 _a201509030201
_bVLOAD
_c201404120442
_dVLOAD
_c201404090224
_dVLOAD
_c201401311340
_dstaff
_y201401291455
_zstaff
_wmsplit0.mrc
_x851
050 4 _aQA276-280
100 1 _aLehmann, E. L.
_eautor
_9301957
245 1 0 _aTesting Statistical Hypotheses /
_cby E. L. Lehmann, Joseph P. Romano.
250 _a3.
264 1 _aNew York, NY :
_bSpringer New York,
_c2005.
300 _aXIV, 786 páginas,
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Texts in Statistics,
_x1431-875X
500 _aSpringer eBooks
505 0 _aSmall-Sample Theory -- The General Decision Problem -- The Probability Background -- Uniformly Most Powerful Tests -- Unbiasedness: Theory and First Applications -- Unbiasedness: Applications to Normal Distributions; Confidence Intervals -- Invariance -- Linear Hypotheses -- The Minimax Principle -- Multiple Testing and Simultaneous Inference -- Conditional Inference -- Large-Sample Theory -- Basic Large Sample Theory -- Quadratic Mean Differentiable Families -- Large Sample Optimality -- Testing Goodness of Fit -- General Large Sample Methods.
520 _aThe third edition of Testing Statistical Hypotheses updates and expands upon the classic graduate text, emphasizing optimality theory for hypothesis testing and confidence sets. The principal additions include a rigorous treatment of large sample optimality, together with the requisite tools. In addition, an introduction to the theory of resampling methods such as the bootstrap is developed. The sections on multiple testing and goodness of fit testing are expanded. The text is suitable for Ph.D. students in statistics and includes over 300 new problems out of a total of more than 760. E.L. Lehmann is Professor of Statistics Emeritus at the University of California, Berkeley. He is a member of the National Academy of Sciences and the American Academy of Arts and Sciences, and the recipient of honorary degrees from the University of Leiden, The Netherlands and the University of Chicago. He is the author of Elements of Large-Sample Theory and (with George Casella) he is also the author of Theory of Point Estimation, Second Edition. Joseph P. Romano is Professor of Statistics at Stanford University. He is a recipient of a Presidential Young Investigator Award and a Fellow of the Institute of Mathematical Statistics. He has coauthored two other books, Subsampling with Dimitris Politis and Michael Wolf, and Counterexamples in Probability and Statistics with Andrew Siegel.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aRomano, Joseph P.
_eautor
_9301958
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387988641
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-387-27605-X
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c278367
_d278367