000 02882nam a22003495i 4500
001 278375
003 MX-SnUAN
005 20160429153901.0
007 cr nn 008mamaa
008 150903s2005 xxu| o |||| 0|eng d
020 _a9780387282763
_9978-0-387-28276-3
024 7 _a10.1007/0387282769
_2doi
035 _avtls000330520
039 9 _a201509030723
_bVLOAD
_c201404120458
_dVLOAD
_c201404090239
_dVLOAD
_c201401311344
_dstaff
_y201401291457
_zstaff
_wmsplit0.mrc
_x940
050 4 _aQA276-280
100 1 _aShao, Jun.
_eautor
_9301979
245 1 0 _aMathematical Statistics: Exercises and Solutions /
_cby Jun Shao.
264 1 _aNew York, NY :
_bSpringer New York,
_c2005.
300 _aXXVIII, 360 páginas,
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aProbability Theory -- Fundamentals of Statistics -- Unbiased Estimation -- Estimation in Parametric Models -- Estimation in Nonparametric Models -- Hypothesis Tests -- Confidence Sets.
520 _aThis book consists of four hundred exercises in mathematical statistics and their solutions, over 95% of which are in the author's Mathematical Statistics, Second Edition (Springer, 2003). For students preparing for work on a Ph.D. degree in statistics and instructors of mathematical statistics courses, this useful book provides solutions to train students for their research ability in mathematical statistics and presents many additional results and examples that complement any text in mathematical statistics. To develop problem-solving skills, two solutions and/or notes of brief discussions accompany a few exercises. The exercises are grouped into seven chapters with titles matching those in the author's Mathematical Statistics. On the other hand, the book is stand-alone because exercises and solutions are comprehensible independently of their source, and notation and terminology are explained in the front of the book. Readers are assumed to have a good knowledge in advanced calculus. A course in real analysis or measure theory is highly recommended. If this book is used with a statistics textbook that does not include probability theory, then knowledge in measure-theoretic probability theory is required. Jun Shao is Professor of Statistics at the University of Wisconsin, Madison.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387249704
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-387-28276-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c278375
_d278375