000 03892nam a22003615i 4500
001 278426
003 MX-SnUAN
005 20160429153903.0
007 cr nn 008mamaa
008 150903s2006 xxu| o |||| 0|eng d
020 _a9780387288154
_99780387288154
024 7 _a10.1007/0387288155
_2doi
035 _avtls000330662
039 9 _a201509030724
_bVLOAD
_c201404120513
_dVLOAD
_c201404090254
_dVLOAD
_c201401311347
_dstaff
_y201401301151
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA76.75-76.765
100 1 _aTrott, Michael.
_eautor
_9301987
245 1 4 _aThe Mathematica GuideBook for Symbolics /
_cby Michael Trott.
264 1 _aNew York, NY :
_bSpringer New York,
_c2006.
300 _axL, 1453 páginas, 848 ilustraciones With DvD.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aIntroduction and Orientation -- I. Symbolic computations: Remarks -- Manipulation of polynomials -- Manipulations of rational functions of polynomials -- Manipulations of trigonometric expressions -- Systems of linear and nonlinear equations -- Classical analysis -- Differential equations -- Integral transforms and generalized functions -- Three applications -- Overview -- II Classical orthogonal polynomials: Remarks -- General properties of orthogonal polynomials -- Hermite polynomials -- Jacobi polynomials -- Gegenbauer polynomials -- Laguerre polynomials -- Legendre polynomials -- Chebyshev polynomials T -- Chebyshev polynomials U -- Relationships among the orthogonal polynomials -- Overview -- III Classical special functions: Remarks/Introduction -- Gamma, beta, and polygamma functions -- Error functions and Fresnel integrals -- Sine, cosine, exponential, and logarithmic integral functions -- Bessel and airy functions -- Legendre functions -- Hypergeometric functions -- Elliptic integrals -- Elliptic functions -- ProductLog function -- Mathieu functions -- Additional special functions -- Solution of quintics with hypergeometric functions -- Overview -- Index.
520 _aMathematica is today's most advanced technical computing system. It features a rich programming environment, two-and three-dimensional graphics capabilities and hundreds of sophisticated, powerful programming and mathematical functions using state-of-the-art algorithms. Combined with a user-friendly interface, and a complete mathematical typesetting system, Mathematica offers an intuitive easy-to-handle environment of great power and utility. "The Mathematica GuideBook for Symbolics" (code and text fully tailored for Mathematica 5.1) deals with Mathematica's symbolic mathematical capabilities. Structural and mathematical operations on single and systems of polynomials are fundamental to many symbolic calculations and they are covered in considerable detail. The solution of equations and differential equations, as well as the classical calculus operations (differentiation, integration, summation, series expansion, limits) are exhaustively treated. Generalized functions and their uses are discussed. In addition, this volume discusses and employs the classical orthogonal polynomials and special functions of mathematical physics. To demonstrate the symbolic mathematics power, a large variety of problems from mathematics and phyics are discussed.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387950204
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-387-28815-5
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c278426
_d278426