000 | 03216nam a22003735i 4500 | ||
---|---|---|---|
001 | 278514 | ||
003 | MX-SnUAN | ||
005 | 20160429153907.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2006 xxu| o |||| 0|eng d | ||
020 |
_a9780387276366 _9978-0-387-27636-6 |
||
024 | 7 |
_a10.1007/038727636-X _2doi |
|
035 | _avtls000330439 | ||
039 | 9 |
_a201509030722 _bVLOAD _c201404120443 _dVLOAD _c201404090225 _dVLOAD _c201401311341 _dstaff _y201401291455 _zstaff _wmsplit0.mrc _x859 |
|
050 | 4 | _aQA76.9.A25 | |
100 | 1 |
_aAxelsson, Stefan. _eautor _9302197 |
|
245 | 1 | 0 |
_aUnderstanding Intrusion Detection Through Visualization / _cby Stefan Axelsson, David Sands. |
264 | 1 |
_aBoston, MA : _bSpringer US, _c2006. |
|
300 |
_aXX, 145 páginas, _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aAdvances in Information Security, _x1568-2633 ; _v24 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aAn Introduction to Intrusion Detection -- The Base-Rate Fallacy and the Difficulty of Intrusion Detection -- Visualizing Intrusions: Watching the Webserver -- Combining a Bayesian Classifier with Visualization: Understanding the IDS -- Visualizing the Inner Workings of a Self Learning Classifier: Improving the Usability of Intrusion Detection Systems -- Visualization for Intrusion Detection—Hooking the Worm -- Epilogue. | |
520 | _aWith the ever increasing use of computers for critical systems, computer security that protects data and computer systems from intentional, malicious intervention, continues to attract significant attention. Among the methods for defense, the application of a tool to help the operator identify ongoing or already perpetrated attacks (intrusion detection), has been the subject of considerable research in the past ten years. A key problem with current intrusion detection systems is the high number of false alarms they produce. Understanding Intrusion Detection through Visualization presents research on why false alarms are, and will remain a problem; then applies results from the field of information visualization to the problem of intrusion detection. This approach promises to enable the operator to identify false (and true) alarms, while aiding the operator to identify other operational characteristics of intrusion detection systems. This volume presents four different visualization approaches, mainly applied to data from web server access logs. Understanding Intrusion Detection through Visualization is structured for security professionals, researchers and practitioners. This book is also suitable for graduate students in computer science. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aSands, David. _eautor _9302198 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780387276342 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-387-27636-X _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c278514 _d278514 |