000 03216nam a22003735i 4500
001 278514
003 MX-SnUAN
005 20160429153907.0
007 cr nn 008mamaa
008 150903s2006 xxu| o |||| 0|eng d
020 _a9780387276366
_9978-0-387-27636-6
024 7 _a10.1007/038727636-X
_2doi
035 _avtls000330439
039 9 _a201509030722
_bVLOAD
_c201404120443
_dVLOAD
_c201404090225
_dVLOAD
_c201401311341
_dstaff
_y201401291455
_zstaff
_wmsplit0.mrc
_x859
050 4 _aQA76.9.A25
100 1 _aAxelsson, Stefan.
_eautor
_9302197
245 1 0 _aUnderstanding Intrusion Detection Through Visualization /
_cby Stefan Axelsson, David Sands.
264 1 _aBoston, MA :
_bSpringer US,
_c2006.
300 _aXX, 145 páginas,
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aAdvances in Information Security,
_x1568-2633 ;
_v24
500 _aSpringer eBooks
505 0 _aAn Introduction to Intrusion Detection -- The Base-Rate Fallacy and the Difficulty of Intrusion Detection -- Visualizing Intrusions: Watching the Webserver -- Combining a Bayesian Classifier with Visualization: Understanding the IDS -- Visualizing the Inner Workings of a Self Learning Classifier: Improving the Usability of Intrusion Detection Systems -- Visualization for Intrusion Detection—Hooking the Worm -- Epilogue.
520 _aWith the ever increasing use of computers for critical systems, computer security that protects data and computer systems from intentional, malicious intervention, continues to attract significant attention. Among the methods for defense, the application of a tool to help the operator identify ongoing or already perpetrated attacks (intrusion detection), has been the subject of considerable research in the past ten years. A key problem with current intrusion detection systems is the high number of false alarms they produce. Understanding Intrusion Detection through Visualization presents research on why false alarms are, and will remain a problem; then applies results from the field of information visualization to the problem of intrusion detection. This approach promises to enable the operator to identify false (and true) alarms, while aiding the operator to identify other operational characteristics of intrusion detection systems. This volume presents four different visualization approaches, mainly applied to data from web server access logs. Understanding Intrusion Detection through Visualization is structured for security professionals, researchers and practitioners. This book is also suitable for graduate students in computer science.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aSands, David.
_eautor
_9302198
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387276342
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-387-27636-X
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c278514
_d278514