000 03962nam a22003855i 4500
001 278561
003 MX-SnUAN
005 20160429153909.0
007 cr nn 008mamaa
008 150903s2006 xxu| o |||| 0|eng d
020 _a9780387283166
_9978-0-387-28316-6
024 7 _a10.1007/0387283161
_2doi
035 _avtls000330527
039 9 _a201509030723
_bVLOAD
_c201404120459
_dVLOAD
_c201404090241
_dVLOAD
_c201401311344
_dstaff
_y201401291457
_zstaff
_wmsplit0.mrc
_x947
050 4 _aTJ1-1570
100 1 _aHowland, R. A.
_eautor
_9302267
245 1 0 _aIntermediate Dynamics: A Linear Algebraic Approach /
_cby R. A. Howland ; edited by Frederick F. Ling, William Howard Hart.
264 1 _aBoston, MA :
_bSpringer US,
_c2006.
300 _aXIX, 548 páginas,
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aMechanical Engineering Series,
_x0941-5122
500 _aSpringer eBooks
505 0 _aLinear Algebra -- Prologue -- Vector Spaces -- Linear Transformations on Vector Spaces -- Special Case—Square Matrices -- Epilogue -- 3-D Rigid Body Dynamics -- Prologue -- Kinematics -- Kinetics -- Epilogue -- Analytical Dynamics -- Prologue -- Analytical Dynamics: Perspective -- Lagrangian Dynamics: Kinematics -- Lagrangian Dynamics: Kinetics -- Integrals of Motion -- Hamiltonian Dynamics -- Epilogue.
520 _aAs the name implies, Intermediate Dynamics: A Linear Algebraic Approach views "intermediate dynamics"--Newtonian 3-D rigid body dynamics and analytical mechanics--from the perspective of the mathematical field. This is particularly useful in the former: the inertia matrix can be determined through simple translation (via the Parallel Axis Theorem) and rotation of axes using rotation matrices. The inertia matrix can then be determined for simple bodies from tabulated moments of inertia in the principal axes; even for bodies whose moments of inertia can be found only numerically, this procedure allows the inertia tensor to be expressed in arbitrary axes--something particularly important in the analysis of machines, where different bodies' principal axes are virtually never parallel. To understand these principal axes (in which the real, symmetric inertia tensor assumes a diagonalized "normal form"), virtually all of Linear Algebra comes into play. Thus the mathematical field is first reviewed in a rigorous, but easy-to-visualize manner. 3-D rigid body dynamics then become a mere application of the mathematics. Finally analytical mechanics--both Lagrangian and Hamiltonian formulations--is developed, where linear algebra becomes central in linear independence of the coordinate differentials, as well as in determination of the conjugate momenta. Features include: o A general, uniform approach applicable to "machines" as well as single rigid bodies. o Complete proofs of all mathematical material. Similarly, there are over 100 detailed examples giving not only the results, but all intermediate calculations. o An emphasis on integrals of the motion in the Newtonian dynamics. o Development of the Analytical Mechanics based on Virtual Work rather than Variational Calculus, both making the presentation more economical conceptually, and the resulting principles able to treat both conservative and non-conservative systems.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aLing, Frederick F.
_eeditor.
_9302189
700 1 _aHart, William Howard.
_eeditor.
_9302191
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387280592
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-387-28316-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c278561
_d278561