000 | 03962nam a22003855i 4500 | ||
---|---|---|---|
001 | 278561 | ||
003 | MX-SnUAN | ||
005 | 20160429153909.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2006 xxu| o |||| 0|eng d | ||
020 |
_a9780387283166 _9978-0-387-28316-6 |
||
024 | 7 |
_a10.1007/0387283161 _2doi |
|
035 | _avtls000330527 | ||
039 | 9 |
_a201509030723 _bVLOAD _c201404120459 _dVLOAD _c201404090241 _dVLOAD _c201401311344 _dstaff _y201401291457 _zstaff _wmsplit0.mrc _x947 |
|
050 | 4 | _aTJ1-1570 | |
100 | 1 |
_aHowland, R. A. _eautor _9302267 |
|
245 | 1 | 0 |
_aIntermediate Dynamics: A Linear Algebraic Approach / _cby R. A. Howland ; edited by Frederick F. Ling, William Howard Hart. |
264 | 1 |
_aBoston, MA : _bSpringer US, _c2006. |
|
300 |
_aXIX, 548 páginas, _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aMechanical Engineering Series, _x0941-5122 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aLinear Algebra -- Prologue -- Vector Spaces -- Linear Transformations on Vector Spaces -- Special Case—Square Matrices -- Epilogue -- 3-D Rigid Body Dynamics -- Prologue -- Kinematics -- Kinetics -- Epilogue -- Analytical Dynamics -- Prologue -- Analytical Dynamics: Perspective -- Lagrangian Dynamics: Kinematics -- Lagrangian Dynamics: Kinetics -- Integrals of Motion -- Hamiltonian Dynamics -- Epilogue. | |
520 | _aAs the name implies, Intermediate Dynamics: A Linear Algebraic Approach views "intermediate dynamics"--Newtonian 3-D rigid body dynamics and analytical mechanics--from the perspective of the mathematical field. This is particularly useful in the former: the inertia matrix can be determined through simple translation (via the Parallel Axis Theorem) and rotation of axes using rotation matrices. The inertia matrix can then be determined for simple bodies from tabulated moments of inertia in the principal axes; even for bodies whose moments of inertia can be found only numerically, this procedure allows the inertia tensor to be expressed in arbitrary axes--something particularly important in the analysis of machines, where different bodies' principal axes are virtually never parallel. To understand these principal axes (in which the real, symmetric inertia tensor assumes a diagonalized "normal form"), virtually all of Linear Algebra comes into play. Thus the mathematical field is first reviewed in a rigorous, but easy-to-visualize manner. 3-D rigid body dynamics then become a mere application of the mathematics. Finally analytical mechanics--both Lagrangian and Hamiltonian formulations--is developed, where linear algebra becomes central in linear independence of the coordinate differentials, as well as in determination of the conjugate momenta. Features include: o A general, uniform approach applicable to "machines" as well as single rigid bodies. o Complete proofs of all mathematical material. Similarly, there are over 100 detailed examples giving not only the results, but all intermediate calculations. o An emphasis on integrals of the motion in the Newtonian dynamics. o Development of the Analytical Mechanics based on Virtual Work rather than Variational Calculus, both making the presentation more economical conceptually, and the resulting principles able to treat both conservative and non-conservative systems. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aLing, Frederick F. _eeditor. _9302189 |
|
700 | 1 |
_aHart, William Howard. _eeditor. _9302191 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780387280592 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-387-28316-1 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c278561 _d278561 |