000 03618nam a22003735i 4500
001 278650
003 MX-SnUAN
005 20160429153913.0
007 cr nn 008mamaa
008 150903s2005 xxu| o |||| 0|eng d
020 _a9780387275611
_9978-0-387-27561-1
024 7 _a10.1007/0387275614
_2doi
035 _avtls000330410
039 9 _a201509030748
_bVLOAD
_c201404110611
_dVLOAD
_c201404090220
_dVLOAD
_c201401311340
_dstaff
_y201401291454
_zstaff
_wmsplit0.mrc
_x830
050 4 _aQA403-403.3
100 1 _aDeitmar, Anton.
_eautor
_9302411
245 1 2 _aA First Course in Harmonic Analysis /
_cby Anton Deitmar.
250 _aSecond Edition.
264 1 _aNew York, NY :
_bSpringer New York,
_c2005.
300 _aXII, 192 páginas,
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUniversitext
500 _aSpringer eBooks
505 0 _aFourier Analysis -- Fourier Series -- Hilbert Spaces -- The Fourier Transform -- Distributions -- LCA Groups -- Finite Abelian Groups -- LCA Groups -- The Dual Group -- Plancherel Theorem -- Noncommutative Groups -- Matrix Groups -- The Representations of SU(2) -- The Peter-Weyl Theorem -- The Heisenberg Groupáginas,
520 _aFrom the reviews of the first edition: "This lovely book is intended as a primer in harmonic analysis at the undergraduate level. All the central concepts of harmonic analysis are introduced using Riemann integral and metric spaces only. The exercises at the end of each chapter are interesting and challenging..." Sanjiv Kumar Gupta for MathSciNet "... In this well-written textbook the central concepts of Harmonic Analysis are explained in an enjoyable way, while using very little technical background. Quite surprisingly this approach works. It is not an exaggeration that each undergraduate student interested in and each professor teaching Harmonic Analysis will benefit from the streamlined and direct approach of this book." Ferenc Móricz for Acta Scientiarum Mathematicarum This book is a primer in harmonic analysis using an elementary approach. Its first aim is to provide an introduction to Fourier analysis, leading up to the Poisson Summation Formula. Secondly, it makes the reader aware of the fact that both, the Fourier series and the Fourier transform, are special cases of a more general theory arising in the context of locally compact abelian groups. The third goal of this book is to introduce the reader to the techniques used in harmonic analysis of noncommutative groups. There are two new chapters in this new edition. One on distributions will complete the set of real variable methods introduced in the first part. The other on the Heisenberg Group provides an example of a group that is neither compact nor abelian, yet is simple enough to easily deduce the Plancherel Theorem. Professor Deitmar is Professor of Mathematics at the University of T"ubingen, Germany. He is a former Heisenberg fellow and has taught in the U.K. for some years. In his leisure time he enjoys hiking in the mountains and practicing Aikido.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387228372
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-387-27561-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c278650
_d278650