000 | 03618nam a22003735i 4500 | ||
---|---|---|---|
001 | 278650 | ||
003 | MX-SnUAN | ||
005 | 20160429153913.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2005 xxu| o |||| 0|eng d | ||
020 |
_a9780387275611 _9978-0-387-27561-1 |
||
024 | 7 |
_a10.1007/0387275614 _2doi |
|
035 | _avtls000330410 | ||
039 | 9 |
_a201509030748 _bVLOAD _c201404110611 _dVLOAD _c201404090220 _dVLOAD _c201401311340 _dstaff _y201401291454 _zstaff _wmsplit0.mrc _x830 |
|
050 | 4 | _aQA403-403.3 | |
100 | 1 |
_aDeitmar, Anton. _eautor _9302411 |
|
245 | 1 | 2 |
_aA First Course in Harmonic Analysis / _cby Anton Deitmar. |
250 | _aSecond Edition. | ||
264 | 1 |
_aNew York, NY : _bSpringer New York, _c2005. |
|
300 |
_aXII, 192 páginas, _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 | _aUniversitext | |
500 | _aSpringer eBooks | ||
505 | 0 | _aFourier Analysis -- Fourier Series -- Hilbert Spaces -- The Fourier Transform -- Distributions -- LCA Groups -- Finite Abelian Groups -- LCA Groups -- The Dual Group -- Plancherel Theorem -- Noncommutative Groups -- Matrix Groups -- The Representations of SU(2) -- The Peter-Weyl Theorem -- The Heisenberg Groupáginas, | |
520 | _aFrom the reviews of the first edition: "This lovely book is intended as a primer in harmonic analysis at the undergraduate level. All the central concepts of harmonic analysis are introduced using Riemann integral and metric spaces only. The exercises at the end of each chapter are interesting and challenging..." Sanjiv Kumar Gupta for MathSciNet "... In this well-written textbook the central concepts of Harmonic Analysis are explained in an enjoyable way, while using very little technical background. Quite surprisingly this approach works. It is not an exaggeration that each undergraduate student interested in and each professor teaching Harmonic Analysis will benefit from the streamlined and direct approach of this book." Ferenc Móricz for Acta Scientiarum Mathematicarum This book is a primer in harmonic analysis using an elementary approach. Its first aim is to provide an introduction to Fourier analysis, leading up to the Poisson Summation Formula. Secondly, it makes the reader aware of the fact that both, the Fourier series and the Fourier transform, are special cases of a more general theory arising in the context of locally compact abelian groups. The third goal of this book is to introduce the reader to the techniques used in harmonic analysis of noncommutative groups. There are two new chapters in this new edition. One on distributions will complete the set of real variable methods introduced in the first part. The other on the Heisenberg Group provides an example of a group that is neither compact nor abelian, yet is simple enough to easily deduce the Plancherel Theorem. Professor Deitmar is Professor of Mathematics at the University of T"ubingen, Germany. He is a former Heisenberg fellow and has taught in the U.K. for some years. In his leisure time he enjoys hiking in the mountains and practicing Aikido. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780387228372 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-387-27561-4 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c278650 _d278650 |