000 03067nam a22003855i 4500
001 278736
003 MX-SnUAN
005 20160429153916.0
007 cr nn 008mamaa
008 150903s2005 xxu| o |||| 0|eng d
020 _a9780387283876
_9978-0-387-28387-6
024 7 _a10.1007/0387283870
_2doi
035 _avtls000330537
039 9 _a201509030723
_bVLOAD
_c201404120501
_dVLOAD
_c201404090242
_dVLOAD
_c201401311344
_dstaff
_y201401291457
_zstaff
_wmsplit0.mrc
_x957
050 4 _aQA611-614.97
100 1 _aRunde, Volker.
_eautor
_9302555
245 1 2 _aA Taste of Topology /
_cby Volker Runde ; edited by S Axler, K.A. Ribet.
264 1 _aNew York, NY :
_bSpringer New York,
_c2005.
300 _aX, 176 páginas, 17 illus.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUniversitext
500 _aSpringer eBooks
505 0 _aPreface -- Introduction -- Set Theory -- Metric Spaces -- Set Theoretic Topology -- Systems of Continuous Functions -- Basic Algebraic Topology -- The Classical Mittag-Leffler Theorem Derived from Bourbaki’s -- Failure of the Heine-Borel Theorem in Infinite-Dimensional Spaces -- The Arzela-Ascoli Theorem -- References -- List of Symbols -- Index.
520 _aIf mathematics is a language, then taking a topology course at the undergraduate level is cramming vocabulary and memorizing irregular verbs: a necessary, but not always exciting exercise one has to go through before one can read great works of literature in the original language. The present book grew out of notes for an introductory topology course at the University of Alberta. It provides a concise introduction to set-theoretic topology (and to a tiny little bit of algebraic topology). It is accessible to undergraduates from the second year on, but even beginning graduate students can benefit from some parts. Great care has been devoted to the selection of examples that are not self-serving, but already accessible for students who have a background in calculus and elementary algebra, but not necessarily in real or complex analysis. In some points, the book treats its material differently than other texts on the subject: * Baire's theorem is derived from Bourbaki's Mittag-Leffler theorem; * Nets are used extensively, in particular for an intuitive proof of Tychonoff's theorem; * A short and elegant, but little known proof for the Stone-Weierstrass theorem is given.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aAxler, S.
_eeditor.
_9302355
700 1 _aRibet, K.A.
_eeditor.
_9302356
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387257907
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-387-28387-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c278736
_d278736