000 | 03067nam a22003855i 4500 | ||
---|---|---|---|
001 | 278736 | ||
003 | MX-SnUAN | ||
005 | 20160429153916.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2005 xxu| o |||| 0|eng d | ||
020 |
_a9780387283876 _9978-0-387-28387-6 |
||
024 | 7 |
_a10.1007/0387283870 _2doi |
|
035 | _avtls000330537 | ||
039 | 9 |
_a201509030723 _bVLOAD _c201404120501 _dVLOAD _c201404090242 _dVLOAD _c201401311344 _dstaff _y201401291457 _zstaff _wmsplit0.mrc _x957 |
|
050 | 4 | _aQA611-614.97 | |
100 | 1 |
_aRunde, Volker. _eautor _9302555 |
|
245 | 1 | 2 |
_aA Taste of Topology / _cby Volker Runde ; edited by S Axler, K.A. Ribet. |
264 | 1 |
_aNew York, NY : _bSpringer New York, _c2005. |
|
300 |
_aX, 176 páginas, 17 illus. _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 | _aUniversitext | |
500 | _aSpringer eBooks | ||
505 | 0 | _aPreface -- Introduction -- Set Theory -- Metric Spaces -- Set Theoretic Topology -- Systems of Continuous Functions -- Basic Algebraic Topology -- The Classical Mittag-Leffler Theorem Derived from Bourbaki’s -- Failure of the Heine-Borel Theorem in Infinite-Dimensional Spaces -- The Arzela-Ascoli Theorem -- References -- List of Symbols -- Index. | |
520 | _aIf mathematics is a language, then taking a topology course at the undergraduate level is cramming vocabulary and memorizing irregular verbs: a necessary, but not always exciting exercise one has to go through before one can read great works of literature in the original language. The present book grew out of notes for an introductory topology course at the University of Alberta. It provides a concise introduction to set-theoretic topology (and to a tiny little bit of algebraic topology). It is accessible to undergraduates from the second year on, but even beginning graduate students can benefit from some parts. Great care has been devoted to the selection of examples that are not self-serving, but already accessible for students who have a background in calculus and elementary algebra, but not necessarily in real or complex analysis. In some points, the book treats its material differently than other texts on the subject: * Baire's theorem is derived from Bourbaki's Mittag-Leffler theorem; * Nets are used extensively, in particular for an intuitive proof of Tychonoff's theorem; * A short and elegant, but little known proof for the Stone-Weierstrass theorem is given. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aAxler, S. _eeditor. _9302355 |
|
700 | 1 |
_aRibet, K.A. _eeditor. _9302356 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780387257907 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-387-28387-0 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c278736 _d278736 |