000 02867nam a22003735i 4500
001 278833
003 MX-SnUAN
005 20161109120606.0
007 cr nn 008mamaa
008 150903s2005 xxu| o |||| 0|eng d
020 _a9780387242477
_9978-0-387-24247-7
024 7 _a10.1007/b104937
_2doi
035 _avtls000330040
039 9 _a201509030232
_bVLOAD
_c201405070455
_dVLOAD
_c201401311327
_dstaff
_c201401311151
_dstaff
_y201401291446
_zstaff
_wmsplit0.mrc
_x460
050 4 _aQA76.9.D343
100 1 _9396436
_aWang, Wei,
_d701-761
_eautor
245 1 0 _aMining Sequential Patterns from Large Data Sets /
_cby Wei Wang, Jiong Yang.
264 1 _aBoston, MA :
_bSpringer US,
_c2005.
300 _aXVI, 160 páginas,
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aAdvances in Database Systems,
_x1386-2944 ;
_v28
500 _aSpringer eBooks
505 0 _aRelated Work -- Periodic Patterns -- Statistically Significant Patterns -- Approximate Patterns -- Conclusion Remark.
520 _aThe focus of Mining Sequential Patterns from Large Data Sets is on sequential pattern mining. In many applications, such as bioinformatics, web access traces, system utilization logs, etc., the data is naturally in the form of sequences. This information has been of great interest for analyzing the sequential data to find its inherent characteristics. Examples of sequential patterns include but are not limited to protein sequence motifs and web page navigation traces. To meet the different needs of various applications, several models of sequential patterns have been proposed. This volume not only studies the mathematical definitions and application domains of these models, but also the algorithms on how to effectively and efficiently find these patterns. Mining Sequential Patterns from Large Data Sets provides a set of tools for analyzing and understanding the nature of various sequences by identifying the specific model(s) of sequential patterns that are most suitable. This book provides an efficient algorithm for mining these patterns. Mining Sequential Patterns from Large Data Sets is designed for a professional audience of researchers and practitioners in industry and also suitable for graduate-level students in computer science.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aYang, Jiong.
_eautor
_9302743
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387242460
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b104937
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c278833
_d278833