000 03940nam a22004095i 4500
001 279047
003 MX-SnUAN
005 20160429153929.0
007 cr nn 008mamaa
008 150903s2008 xxu| o |||| 0|eng d
020 _a9780387746760
_99780387746760
024 7 _a10.1007/9780387746760
_2doi
035 _avtls000332527
039 9 _a201509030230
_bVLOAD
_c201404122154
_dVLOAD
_c201404091925
_dVLOAD
_y201402041031
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aHD30.23
100 1 _aDrew, John H.
_eautor
_9303137
245 1 0 _aComputational Probability :
_bAlgorithms and Applications in the Mathematical Sciences /
_cby John H. Drew, Diane L. Evans, Andrew G. Glen, Lawrence M. Leemis.
264 1 _aBoston, MA :
_bSpringer US,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aIn Operations Research & Management Science,
_x0884-8289 ;
_v117
500 _aSpringer eBooks
505 0 _aComputational Probability -- Maple for APPL -- Algorithms for Continuous Random Variables -- Data Structures and Simple Algorithms -- Transformations of Random Variables -- Products of Random Variables -- Algorithms for Discrete Random Variables -- Data Structures and Simple Algorithms -- Sums of Independent Random Variables -- Order Statistics -- Applications -- Reliability and Survival Analysis -- Stochastic Simulation -- Other Applications.
520 _aComputational probability encompasses data structures and algorithms that have emerged over the past decade that allow researchers and students to focus on a new class of stochastic problems. COMPUTATIONAL PROBABILITY is the first book that examines and presents these computational methods in a systematic manner. The techniques described here address problems that require exact probability calculations, many of which have been considered intractable in the past. The first chapter introduces computational probability analysis, followed by a chapter on the Maple computer algebra system. The third chapter begins the description of APPL, the probability modeling language created by the authors. The book ends with three applications-based chapters that emphasize applications in survival analysis and stochastic simulation. The algorithmic material associated with continuous random variables is presented separately from the material for discrete random variables. Four sample algorithms, which are implemented in APPL, are presented in detail: transformations of continuous random variables, products of independent continuous random variables, sums of independent discrete random variables, and order statistics drawn from discrete populations. The APPL computational modeling language gives the field of probability a strong software resource to use for non-trivial problems and is available at no cost from the authors. APPL is currently being used in applications as wide-ranging as electric power revenue forecasting, analyzing cortical spike trains, and studying the supersonic expansion of hydrogen molecules. Requests for the software have come from fields as diverse as market research, pathology, neurophysiology, statistics, engineering, psychology, physics, medicine, and chemistry.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aEvans, Diane L.
_eautor
_9303138
700 1 _aGlen, Andrew G.
_eautor
_9303139
700 1 _aLeemis, Lawrence M.
_eautor
_9303140
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387746753
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-74676-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c279047
_d279047