000 03122nam a22003735i 4500
001 279074
003 MX-SnUAN
005 20160429153930.0
007 cr nn 008mamaa
008 150903s2009 xxu| o |||| 0|eng d
020 _a9780387787534
_99780387787534
024 7 _a10.1007/9780387787534
_2doi
035 _avtls000332958
039 9 _a201509030759
_bVLOAD
_c201404122317
_dVLOAD
_c201404092054
_dVLOAD
_y201402041059
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA241-247.5
100 1 _aAndrianov, Anatoli.
_eautor
_9303193
245 1 0 _aIntroduction to Siegel Modular Forms and Dirichlet Series /
_cby Anatoli Andrianov.
264 1 _aNew York, NY :
_bSpringer US,
_c2009.
300 _axii, 184 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUniversitext,
_x0172-5939
500 _aSpringer eBooks
505 0 _aModular Forms -- Dirichlet Series of Modular Forms -- Hecke–Shimura Rings of Double Cosets -- Hecke Operators -- Euler Factorization of Radial Series.
520 _aIntroduction to Siegel Modular Forms and Dirichlet Series gives a concise and self-contained introduction to the multiplicative theory of Siegel modular forms, Hecke operators, and zeta functions, including the classical case of modular forms in one variable. It serves to attract young researchers to this beautiful field and makes the initial steps more pleasant. It treats a number of questions that are rarely mentioned in other books. It is the first and only book so far on Siegel modular forms that introduces such important topics as analytic continuation and the functional equation of spinor zeta functions of Siegel modular forms of genus two. Unique features include: * New, simplified approaches and a fresh outlook on classical problems * The abstract theory of Hecke–Shimura rings for symplectic and related groups * The action of Hecke operators on Siegel modular forms * Applications of Hecke operators to a study of the multiplicative properties of Fourier coefficients of modular forms * The proof of analytic continuation and the functional equation (under certain assumptions) for Euler products associated with modular forms of genus two *Numerous exercises Anatoli Andrianov is a leading researcher at the St. Petersburg branch of the Steklov Mathematical Institute of the Russian Academy of Sciences. He is well known for his works on the arithmetic theory of automorphic functions and quadratic forms, a topic on which he has lectured at many universities around the world.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387787527
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-78753-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c279074
_d279074