000 | 03122nam a22003735i 4500 | ||
---|---|---|---|
001 | 279074 | ||
003 | MX-SnUAN | ||
005 | 20160429153930.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2009 xxu| o |||| 0|eng d | ||
020 |
_a9780387787534 _99780387787534 |
||
024 | 7 |
_a10.1007/9780387787534 _2doi |
|
035 | _avtls000332958 | ||
039 | 9 |
_a201509030759 _bVLOAD _c201404122317 _dVLOAD _c201404092054 _dVLOAD _y201402041059 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA241-247.5 | |
100 | 1 |
_aAndrianov, Anatoli. _eautor _9303193 |
|
245 | 1 | 0 |
_aIntroduction to Siegel Modular Forms and Dirichlet Series / _cby Anatoli Andrianov. |
264 | 1 |
_aNew York, NY : _bSpringer US, _c2009. |
|
300 |
_axii, 184 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aUniversitext, _x0172-5939 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aModular Forms -- Dirichlet Series of Modular Forms -- Hecke–Shimura Rings of Double Cosets -- Hecke Operators -- Euler Factorization of Radial Series. | |
520 | _aIntroduction to Siegel Modular Forms and Dirichlet Series gives a concise and self-contained introduction to the multiplicative theory of Siegel modular forms, Hecke operators, and zeta functions, including the classical case of modular forms in one variable. It serves to attract young researchers to this beautiful field and makes the initial steps more pleasant. It treats a number of questions that are rarely mentioned in other books. It is the first and only book so far on Siegel modular forms that introduces such important topics as analytic continuation and the functional equation of spinor zeta functions of Siegel modular forms of genus two. Unique features include: * New, simplified approaches and a fresh outlook on classical problems * The abstract theory of Hecke–Shimura rings for symplectic and related groups * The action of Hecke operators on Siegel modular forms * Applications of Hecke operators to a study of the multiplicative properties of Fourier coefficients of modular forms * The proof of analytic continuation and the functional equation (under certain assumptions) for Euler products associated with modular forms of genus two *Numerous exercises Anatoli Andrianov is a leading researcher at the St. Petersburg branch of the Steklov Mathematical Institute of the Russian Academy of Sciences. He is well known for his works on the arithmetic theory of automorphic functions and quadratic forms, a topic on which he has lectured at many universities around the world. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780387787527 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-78753-4 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c279074 _d279074 |