000 05318nam a22003615i 4500
001 279123
003 MX-SnUAN
005 20160429153932.0
007 cr nn 008mamaa
008 150903s2008 xxu| o |||| 0|eng d
020 _a9780387743516
_99780387743516
024 7 _a10.1007/9780387743516
_2doi
035 _avtls000332484
039 9 _a201509030749
_bVLOAD
_c201404122146
_dVLOAD
_c201404091917
_dVLOAD
_y201402041030
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aRC321-580
100 1 _aO'Donnell, Patricio.
_eeditor.
_9303274
245 1 0 _aCortical Deficits In Schizophrenia :
_bFrom Genes to Function /
_cedited by Patricio O'Donnell.
264 1 _aBoston, MA :
_bSpringer US,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aSchizophrenia Genes: Searching for Common Features, Functions, and Mechanisms -- Towards a Molecular Classification of Illness: Effects of Schizophrenia Susceptibility Loci on Clinical Symptoms and Cognitive Function -- Homer: A Genetic Factor in Schizophrenia? -- Neuregulin-erbB Signaling and the Pathogenesis of Schizophrenia -- Nicotinic Cholinergic Cortical Dysfunction in Schizophrenia -- A Role for Glutamate Receptors, Transporters, and Interacting Proteins in Cortical Dysfunction in Schizophrenia -- Cortical Circuit Dysfunction in the NMDA Receptor Hypofunction Model for the Psychosis of Schizophrenia -- Alterations in Hippocampal Function in Schizophrenia: its Genetic Associations and Systems Implications -- Identifying Novel Target Genes in Psychotic Disorder Network Association Analyses -- Alterations in Cortical GABA Neurotransmission in Schizophrenia: Causes and Consequences -- Increased Cortical Excitability as a Critical Element in Schizophrenia Pathophysiology.
520 _aThe genetics of schizophrenia have taken the driver seat in the research related to this disorder in recent years. For a long time, it had been known that sharing genes with someone affected with schizophrenia conferred a 50% chance of acquiring the disease. Although this is fifty times the incidence in the normal population, it was evident that genes could not explain all factors involved. At best, one could think of a combination of gene traits conferring predisposition for the disease. Now, it is evident that although there are no genes that individually confer a strong liability, several candidate gene alleles do confer some risk, and perhaps a combination of genes could cause the emergence of symptoms in this multi-faceted psychiatric condition. As the research on predisposing genes soars, it is becoming clear that we need to be able to identify cellular processes the genes control and to provide patho-physiological scenarios that could link those cellular phenomena with symptoms. Cortical Deficits in Schizophrenia: From Genes to Function elaborates on that link. The contributions to this book reflect the current state of the connection between schizophrenia genetics and pathophysiology. The book opens with a chapter by Paul Harrison highlighting the several convergence points among the diverse schizophrenia-related genes. This is followed by chapters reviewing several different specific genes, including Neuregulin, DISC-1, dysbindin, and Homer, among others, and by several chapters presenting information on physiological cortical processes that could be affected by those genes. These include glutamatergic, GABAergic and cholinergic neurotransmission. Current hot topics in schizophrenia research are also highlighted in the book. A concept that is gaining strength in the field, for example, is the role of inhibitory neurotransmission in schizophrenia pathophysiology, with converging (and convincing) data from post-mortem and imaging studies. The possibility of deficits in cortical inhibition (causing the emergence of "noisy" cortical activity) is discussed throughout the book in relationship with possible alterations in GABA and/or glutamate activity in several cortical areas including the prefrontal cortex and the temporal lobe. Thus, the chapters in this book summarize the current state of affairs in schizophrenia pathophysiology, with a consideration of genetic elements that may contribute to it. Cortical Deficits in Schizophrenia: From Genes to Function will prove a useful tool for those interested in a better understanding of schizophrenia. Even if more predisposing genes (not included in this book) become identified, the work laid out here will prove critical for assigning a functional (or dysfunctional) role to those genes. Although this is a fast-evolving field, the information and concepts covered in this book will likely be useful for years to come.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387743509
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-74351-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c279123
_d279123