000 | 03801nam a22003735i 4500 | ||
---|---|---|---|
001 | 279129 | ||
003 | MX-SnUAN | ||
005 | 20160429153933.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2009 xxu| o |||| 0|eng d | ||
020 |
_a9780387747255 _99780387747255 |
||
024 | 7 |
_a10.1007/9780387747255 _2doi |
|
035 | _avtls000332531 | ||
039 | 9 |
_a201509030230 _bVLOAD _c201404122155 _dVLOAD _c201404091926 _dVLOAD _y201402041031 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA150-272 | |
100 | 1 |
_aChilds, Lindsay N. _eeditor. _9303285 |
|
245 | 1 | 2 |
_aA Concrete Introduction to Higher Algebra / _cedited by Lindsay N. Childs. |
264 | 1 |
_aNew York, NY : _bSpringer New York, _c2009. |
|
300 |
_axiv, 603 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aUndergraduate Texts in Mathematics, _x0172-6056 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aNumbers -- Numbers -- Induction -- Euclid's Algorithm -- Unique Factorization -- Congruence -- Congruence classes and rings -- Congruence Classes -- Rings and Fields -- Matrices and Codes -- Congruences and Groups -- Fermat's and Euler's Theorems -- Applications of Euler's Theorem -- Groups -- The Chinese Remainder Theorem -- Polynomials -- Polynomials -- Unique Factorization -- The Fundamental Theorem of Algebra -- Polynomials in ?[x] -- Congruences and the Chinese Remainder Theorem -- Fast Polynomial Multiplication -- Primitive Roots -- Cyclic Groups and Cryptography -- Carmichael Numbers -- Quadratic Reciprocity -- Quadratic Applications -- Finite Fields -- Congruence Classes Modulo a Polynomial -- Homomorphisms and Finite Fields -- BCH Codes -- Factoring Polynomials -- Factoring in ?[x] -- Irreducible Polynomials. | |
520 | _aThis book is an informal and readable introduction to higher algebra at the post-calculus level. The concepts of ring and field are introduced through study of the familiar examples of the integers and polynomials. A strong emphasis on congruence classes leads in a natural way to finite groups and finite fields. The new examples and theory are built in a well-motivated fashion and made relevant by many applications - to cryptography, error correction, integration, and especially to elementary and computational number theory. The later chapters include expositions of Rabin's probabilistic primality test, quadratic reciprocity, the classification of finite fields, and factoring polynomials over the integers. Over 1000 exercises, ranging from routine examples to extensions of theory, are found throughout the book; hints and answers for many of them are included in an appendix. The new edition includes topics such as Luhn's formula, Karatsuba multiplication, quotient groups and homomorphisms, Blum-Blum-Shub pseudorandom numbers, root bounds for polynomials, Montgomery multiplication, and more. "At every stage, a wide variety of applications is presented...The user-friendly exposition is appropriate for the intended audience" - T.W. Hungerford, Mathematical Reviews "The style is leisurely and informal, a guided tour through the foothills, the guide unable to resist numerous side paths and return visits to favorite spots..." - Michael Rosen, American Mathematical Monthly | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780387745275 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-74725-5 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c279129 _d279129 |