000 | 03357nam a22003735i 4500 | ||
---|---|---|---|
001 | 279231 | ||
003 | MX-SnUAN | ||
005 | 20160429153937.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2008 xxu| o |||| 0|eng d | ||
020 |
_a9780387792347 _99780387792347 |
||
024 | 7 |
_a10.1007/9780387792347 _2doi |
|
035 | _avtls000333005 | ||
039 | 9 |
_a201509030222 _bVLOAD _c201404122326 _dVLOAD _c201404092104 _dVLOAD _y201402041100 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aTK1-9971 | |
100 | 1 |
_aYeung, Raymond W. _eautor _9303433 |
|
245 | 1 | 0 |
_aInformation Theory and Network Coding / _cby Raymond W. Yeung. |
264 | 1 |
_aBoston, MA : _bSpringer US, _c2008. |
|
300 |
_axxii, 582 páginas 130 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 | _aInformation Technology Transmission Processing and Storage | |
500 | _aSpringer eBooks | ||
505 | 0 | _aThe Science of Information -- The Science of Information -- Fundamentals of Network Coding -- Information Measures -- Information Measures -- Zero-Error Data Compression -- Weak Typicality -- Strong Typicality -- Discrete Memoryless Channels -- Rate-Distortion Theory -- The Blahut–Arimoto Algorithms -- Differential Entropy -- Continuous-Valued Channels -- Markov Structures -- Information Inequalities -- Shannon-Type Inequalities -- Beyond Shannon-Type Inequalities -- Entropy and Groups -- Fundamentals of Network Coding -- The Max-Flow Bound -- Single-Source Linear Network Coding: Acyclic Networks -- Single-Source Linear Network Coding: Cyclic Networks -- Multi-source Network Coding. | |
520 | _aInformation Theory and Network Coding consists of two parts: Components of Information Theory, and Fundamentals of Network Coding Theory. Part I is a rigorous treatment of information theory for discrete and continuous systems. In addition to the classical topics, there are such modern topics as the I-Measure, Shannon-type and non-Shannon-type information inequalities, and a fundamental relation between entropy and group theory. With information theory as the foundation, Part II is a comprehensive treatment of network coding theory with detailed discussions on linear network codes, convolutional network codes, and multi-source network coding. Other important features include: Derivations that are from the first principle A large number of examples throughout the book Many original exercise problems Easy-to-use chapter summaries Two parts that can be used separately or together for a comprehensive course Information Theory and Network Coding is for senior undergraduate and graduate students in electrical engineering, computer science, and applied mathematics. This work can also be used as a reference for professional engineers in the area of communications. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780387792330 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-79234-7 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c279231 _d279231 |