000 04135nam a22003855i 4500
001 279313
003 MX-SnUAN
005 20160429153940.0
007 cr nn 008mamaa
008 150903s2008 xxu| o |||| 0|eng d
020 _a9780387759340
_99780387759340
024 7 _a10.1007/9780387759340
_2doi
035 _avtls000332645
039 9 _a201509030234
_bVLOAD
_c201404122217
_dVLOAD
_c201404091948
_dVLOAD
_y201402041034
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA71-90
100 1 _aBrenner, Susanne C.
_eautor
_9303569
245 1 4 _aThe Mathematical Theory of Finite Element Methods /
_cby Susanne C. Brenner, L. Ridgway Scott.
264 1 _aNew York, NY :
_bSpringer New York,
_c2008.
300 _axviii, 402 páginas 50 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aTexts in Applied Mathematics,
_x0939-2475 ;
_v15
500 _aSpringer eBooks
505 0 _aBasic Concepts -- Sobolev Spaces -- Variational Formulation of Elliptic Boundary Value Problems -- The Construction of a Finite Element Space -- Polynomial Approximation Theory in Sobolev Spaces -- n-Dimensional Variational Problems -- Finite Element Multigrid Methods -- Additive Schwarz Preconditioners -- Max—norm Estimates -- Adaptive Meshes -- Variational Crimes -- Applications to Planar Elasticity -- Mixed Methods -- Iterative Techniques for Mixed Methods -- Applications of Operator-Interpolation Theory.
520 _aThis book develops the basic mathematical theory of the finite element method, the most widely used technique for engineering design and analysis. The third edition contains four new sections: the BDDC domain decomposition preconditioner, convergence analysis of an adaptive algorithm, interior penalty methods and Poincara\'e-Friedrichs inequalities for piecewise W^1_p functions. New exercises have also been added throughout. The initial chapter provides an introducton to the entire subject, developed in the one-dimensional case. Four subsequent chapters develop the basic theory in the multidimensional case, and a fifth chapter presents basic applications of this theory. Subsequent chapters provide an introduction to: - multigrid methods and domain decomposition methods - mixed methods with applications to elasticity and fluid mechanics - iterated penalty and augmented Lagrangian methods - variational "crimes" including nonconforming and isoparametric methods, numerical integration and interior penalty methods - error estimates in the maximum norm with applications to nonlinear problems - error estimators, adaptive meshes and convergence analysis of an adaptive algorithm - Banach-space operator-interpolation techniques The book has proved useful to mathematicians as well as engineers and physical scientists. It can be used for a course that provides an introduction to basic functional analysis, approximation theory and numerical analysis, while building upon and applying basic techniques of real variable theory. It can also be used for courses that emphasize physical applications or algorithmic efficiency. Reviews of earlier editions: "This book represents an important contribution to the mathematical literature of finite elements. It is both a well-done text and a good reference." (Mathematical Reviews, 1995) "This is an excellent, though demanding, introduction to key mathematical topics in the finite element method, and at the same time a valuable reference and source for workers in the area." (Zentralblatt, 2002)
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aScott, L. Ridgway.
_eautor
_9303570
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387759333
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-75934-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c279313
_d279313