000 03490nam a22003615i 4500
001 279393
003 MX-SnUAN
005 20160429153944.0
007 cr nn 008mamaa
008 150903s2009 xxu| o |||| 0|eng d
020 _a9780387854946
_99780387854946
024 7 _a10.1007/9780387854946
_2doi
035 _avtls000333119
039 9 _a201509030213
_bVLOAD
_c201404122348
_dVLOAD
_c201404092127
_dVLOAD
_y201402041103
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
100 1 _aLipscomb, Stephen.
_eautor
_9303692
245 1 0 _aFractals and Universal Spaces in Dimension Theory /
_cby Stephen Lipscomb.
264 1 _aNew York, NY :
_bSpringer New York,
_c2009.
300 _axviii, 242 páginas 91 ilustraciones, 15 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Monographs in Mathematics,
_x1439-7382
500 _aSpringer eBooks
505 0 _aConstruction of = -- Self-Similarity and for Finite -- No-Carry Property of -- Imbedding in Hilbert Space -- Infinite IFS with Attractor -- Dimension Zero -- Decompositions -- The Imbedding Theorem -- Minimal-Exponent Question -- The Imbedding Theorem -- 1992–2007 -Related Research -- Isotopy Moves into 3-Space -- From 2-Web IFS to 2-Simplex IFS 2-Space and the 1-Sphere -- From 3-Web IFS to 3-Simplex IFS 3-Space and the 2-Sphere.
520 _aFor metric spaces the quest for universal spaces in dimension theory spanned approximately a century of mathematical research. The history breaks naturally into two periods — the classical (separable metric) and the modern (not necessarily separable metric). While the classical theory is now well documented in several books, this is the first book to unify the modern theory (1960 – 2007). Like the classical theory, the modern theory fundamentally involves the unit interval. By the 1970s, the author of this monograph generalized Cantor’s 1883 construction (identify adjacent-endpoints in Cantor’s set) of the unit interval, obtaining — for any given weight — a one-dimensional metric space that contains rationals and irrationals as counterparts to those in the unit interval. Following the development of fractal geometry during the 1980s, these new spaces turned out to be the first examples of attractors of infinite iterated function systems — “generalized fractals.” The use of graphics to illustrate the fractal view of these spaces is a unique feature of this monograph. In addition, this book provides historical context for related research that includes imbedding theorems, graph theory, and closed imbeddings. This monograph will be useful to topologists, to mathematicians working in fractal geometry, and to historians of mathematics. It can also serve as a text for graduate seminars or self-study — the interested reader will find many relevant open problems that will motivate further research into these topics.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387854939
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-85494-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c279393
_d279393