000 | 03642nam a22003855i 4500 | ||
---|---|---|---|
001 | 279638 | ||
003 | MX-SnUAN | ||
005 | 20160429153953.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2007 xxu| o |||| 0|eng d | ||
020 |
_a9780387741031 _99780387741031 |
||
024 | 7 |
_a10.1007/9780387741031 _2doi |
|
035 | _avtls000332463 | ||
039 | 9 |
_a201509030226 _bVLOAD _c201404122142 _dVLOAD _c201404091912 _dVLOAD _y201402041029 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQC173.96-174.52 | |
100 | 1 |
_aFujita, Shigeji. _eautor _9304076 |
|
245 | 1 | 0 |
_aQuantum Theory of Conducting Matter : _bNewtonian Equations of Motion for a Bloch Electron / _cby Shigeji Fujita, Kei Ito. |
250 | _a1. | ||
264 | 1 |
_aNew York, NY : _bSpringer New York, _c2007. |
|
300 | _brecurso en línea. | ||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aPreliminaries -- Lattice Vibrations and Heat Capacity -- Free Electrons and Heat Capacity -- Electric Conduction and the Hall Effect -- Magnetic Susceptibility -- Boltzmann Equation Method -- Bloch Electron Dynamics -- Bloch Theorem -- The Fermi Liquid Model -- The Fermi Surface -- Bloch Electron Dynamics -- Applications Fermionic Systems (Electrons) -- De Haas–Van Alphen Oscillations -- Magnetoresistance -- Cyclotron Resonance -- Seebeck Coefficient (Thermopower) -- Infrared Hall Effect. | |
520 | _aQuantum Theory of Conducting Matter: Newtonian Equations of Motion for a Bloch Electron targets scientists, researchers and graduate-level students focused on experimentation in the fields of physics, chemistry, electrical engineering, and material sciences. It is important that the reader have an understanding of dynamics, quantum mechanics, thermodynamics, statistical mechanics, electromagnetism and solid-state physics. Many worked-out problems are included in the book to aid the reader's comprehension of the subject. The Bloch electron (wave packet) moves by following the Newtonian equation of motion. Under an applied magnetic field B the electron circulates around the field B counterclockwise or clockwise depending on the curvature of the Fermi surface. The signs of the Hall coefficient and the Seebeck coefficient are known to give the sign of the major carrier charge. For alkali metals, both are negative, indicating that the carriers are "electrons." These features arise from the Fermi surface difference. The authors show an important connection between the conduction electrons and the Fermi surface in an elementary manner in the text. No currently available text explains this connection. The authors do this by deriving Newtonian equations of motion for the Bloch electron and diagonalizing the inverse mass (symmetric) tensor. The currently active areas of research, high-temperature superconductivity and Quantum Hall Effect, are important subjects in the conducting matter physics, and the authors plan to follow up this book with a second, more advanced book on superconductivity and the Quantum Hall Effect. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aIto, Kei. _eautor _9304077 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780387741024 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-74103-1 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c279638 _d279638 |