000 03642nam a22003855i 4500
001 279638
003 MX-SnUAN
005 20160429153953.0
007 cr nn 008mamaa
008 150903s2007 xxu| o |||| 0|eng d
020 _a9780387741031
_99780387741031
024 7 _a10.1007/9780387741031
_2doi
035 _avtls000332463
039 9 _a201509030226
_bVLOAD
_c201404122142
_dVLOAD
_c201404091912
_dVLOAD
_y201402041029
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQC173.96-174.52
100 1 _aFujita, Shigeji.
_eautor
_9304076
245 1 0 _aQuantum Theory of Conducting Matter :
_bNewtonian Equations of Motion for a Bloch Electron /
_cby Shigeji Fujita, Kei Ito.
250 _a1.
264 1 _aNew York, NY :
_bSpringer New York,
_c2007.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aPreliminaries -- Lattice Vibrations and Heat Capacity -- Free Electrons and Heat Capacity -- Electric Conduction and the Hall Effect -- Magnetic Susceptibility -- Boltzmann Equation Method -- Bloch Electron Dynamics -- Bloch Theorem -- The Fermi Liquid Model -- The Fermi Surface -- Bloch Electron Dynamics -- Applications Fermionic Systems (Electrons) -- De Haas–Van Alphen Oscillations -- Magnetoresistance -- Cyclotron Resonance -- Seebeck Coefficient (Thermopower) -- Infrared Hall Effect.
520 _aQuantum Theory of Conducting Matter: Newtonian Equations of Motion for a Bloch Electron targets scientists, researchers and graduate-level students focused on experimentation in the fields of physics, chemistry, electrical engineering, and material sciences. It is important that the reader have an understanding of dynamics, quantum mechanics, thermodynamics, statistical mechanics, electromagnetism and solid-state physics. Many worked-out problems are included in the book to aid the reader's comprehension of the subject. The Bloch electron (wave packet) moves by following the Newtonian equation of motion. Under an applied magnetic field B the electron circulates around the field B counterclockwise or clockwise depending on the curvature of the Fermi surface. The signs of the Hall coefficient and the Seebeck coefficient are known to give the sign of the major carrier charge. For alkali metals, both are negative, indicating that the carriers are "electrons." These features arise from the Fermi surface difference. The authors show an important connection between the conduction electrons and the Fermi surface in an elementary manner in the text. No currently available text explains this connection. The authors do this by deriving Newtonian equations of motion for the Bloch electron and diagonalizing the inverse mass (symmetric) tensor. The currently active areas of research, high-temperature superconductivity and Quantum Hall Effect, are important subjects in the conducting matter physics, and the authors plan to follow up this book with a second, more advanced book on superconductivity and the Quantum Hall Effect.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aIto, Kei.
_eautor
_9304077
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387741024
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-74103-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c279638
_d279638