000 03848nam a22003735i 4500
001 279682
003 MX-SnUAN
005 20190830080436.0
007 cr nn 008mamaa
008 150903s2009 xxu| o |||| 0|eng d
020 _a9780387856483
_99780387856483
024 7 _a10.1007/9780387856483
_2doi
035 _avtls000333133
039 9 _a201509030213
_bVLOAD
_c201404122350
_dVLOAD
_c201404092129
_dVLOAD
_y201402041103
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA299.6-433
100 1 _9304154
_aMaz'ya, Vladimir.
_eeditor.
245 1 0 _aSobolev Spaces In Mathematics I :
_bSobolev Type Inequalities /
_cedited by Vladimir Maz’ya.
264 1 _aNew York, NY :
_bSpringer New York,
_c2009.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aInternational Mathematical Series,
_x1571-5485 ;
_v8
500 _aSpringer eBooks
505 0 _aMy Love Affair with the Sobolev Inequality -- Maximal Functions in Sobolev Spaces -- Hardy Type Inequalities via Riccati and Sturm–Liouville Equations -- Quantitative Sobolev and Hardy Inequalities, and Related Symmetrization Principles -- Inequalities of Hardy–Sobolev Type in Carnot–Carathéodory Spaces -- Sobolev Embeddings and Hardy Operators -- Sobolev Mappings between Manifolds and Metric Spaces -- A Collection of Sharp Dilation Invariant Integral Inequalities for Differentiable Functions -- Optimality of Function Spaces in Sobolev Embeddings -- On the Hardy–Sobolev–Maz'ya Inequality and Its Generalizations -- Sobolev Inequalities in Familiar and Unfamiliar Settings -- A Universality Property of Sobolev Spaces in Metric Measure Spaces -- Cocompact Imbeddings and Structure of Weakly Convergent Sequences.
520 _aThis volume is dedicated to the centenary of the outstanding mathematician of the XXth century Sergey Sobolev and, in a sense, to his celebrated work On a theorem of functional analysis published in 1938, exactly 70 years ago, where the original Sobolev inequality was proved. This double event is a good case to gather experts for presenting the latest results on the study of Sobolev inequalities which play a fundamental role in analysis, the theory of partial differential equations, mathematical physics, and differential geometry. In particular, the following topics are discussed: Sobolev type inequalities on manifolds and metric measure spaces, traces, inequalities with weights, unfamiliar settings of Sobolev type inequalities, Sobolev mappings between manifolds and vector spaces, properties of maximal functions in Sobolev spaces, the sharpness of constants in inequalities, etc. The volume opens with a nice survey reminiscence My Love Affair with the Sobolev Inequality by David R. Adams. Contributors include: David R. Adams (USA); Daniel Aalto (Finland) and Juha Kinnunen (Finland); Sergey Bobkov (USA) and Friedrich Götze (Germany); Andrea Cianchi (Italy); Donatella Danielli (USA), Nicola Garofalo (USA), and Nguyen Cong Phuc (USA); David E. Edmunds (UK) and W. Desmond Evans (UK); Piotr Hajlasz (USA); Vladimir Maz'ya (USA-UK-Sweden) and Tatyana Shaposhnikova USA-Sweden); Luboš Pick (Czech Republic); Yehuda Pinchover (Israel) and Kyril Tintarev (Sweden); Laurent Saloff-Coste (USA); Nageswari Shanmugalingam (USA).
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387856476
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-85648-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c279682
_d279682