000 03795nam a22003855i 4500
001 279685
003 MX-SnUAN
005 20160429153955.0
007 cr nn 008mamaa
008 150903s2008 xxu| o |||| 0|eng d
020 _a9780387738291
_99780387738291
024 7 _a10.1007/9780387738291
_2doi
035 _avtls000332418
039 9 _a201509030226
_bVLOAD
_c201404122133
_dVLOAD
_c201404091904
_dVLOAD
_y201402041028
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA370-380
100 1 _aPavliotis, Grigorios A.
_eautor
_9304155
245 1 0 _aMultiscale Methods :
_bAveraging and Homogenization /
_cby Grigorios A. Pavliotis, Andrew M. Stuart.
264 1 _aNew York, NY :
_bSpringer New York,
_c2008.
300 _axviii, 310 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aTexts Applied in Mathematics,
_x0939-2475 ;
_v53
500 _aSpringer eBooks
505 0 _aBackground -- Analysis -- Probability Theory and Stochastic Processes -- Ordinary Differential Equations -- Markov Chains -- Stochastic Differential Equations -- Partial Differential Equations -- Perturbation Expansions -- Invariant Manifolds for ODEs -- Averaging for Markov Chains -- Averaging for ODEs and SDEs -- Homogenization for ODEs and SDEs -- Homogenization for Elliptic PDEs -- Homogenization for Parabolic PDEs -- Averaging for Linear Transport and Parabolic PDEs -- Theory -- Invariant Manifolds for ODEs: The Convergence Theorem -- Averaging for Markov Chains: The Convergence Theorem -- Averaging for SDEs: The Convergence Theorem -- Homogenization for SDEs: The Convergence Theorem -- Homogenization for Elliptic PDEs: The Convergence Theorem -- Homogenization for Elliptic PDEs: The Convergence Theorem -- Averaging for Linear Transport and Parabolic PDEs: The Convergence Theorem.
520 _aThis introduction to multiscale methods gives readers a broad overview of the many uses and applications of the methods. The book begins by setting the theoretical foundations of the subject area, and moves on to develop a unified approach to the simplification of a wide range of problems which possess multiple scales, via perturbation expansions; differential equations and stochastic processes are studied in one unified framework. The book concludes with an overview of a range of theoretical tools used to justify the simplified models derived via the perturbation expansions. The presentation of the material is particularly suited to the range of mathematicians, scientists and engineers who want to exploit multiscale methods in applications. Extensive use of examples shows how to apply multiscale methods to solving a variety of problems. Exercises then enable readers to build their own skills and put them into practice. Extensions and generalizations of the results presented in the book, as well as references to the literature, are provided in the Discussion and Bibliography section at the end of each chapter. All of the twenty-one chapters are supplemented with exercises. Grigorios Pavliotis is a Lecturer of Mathematics at Imperial College London. Andrew Stuart is a Professor of Mathematics at Warwick University.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aStuart, Andrew M.
_eautor
_9304156
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387738284
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-73829-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c279685
_d279685