000 | 03795nam a22003855i 4500 | ||
---|---|---|---|
001 | 279685 | ||
003 | MX-SnUAN | ||
005 | 20160429153955.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2008 xxu| o |||| 0|eng d | ||
020 |
_a9780387738291 _99780387738291 |
||
024 | 7 |
_a10.1007/9780387738291 _2doi |
|
035 | _avtls000332418 | ||
039 | 9 |
_a201509030226 _bVLOAD _c201404122133 _dVLOAD _c201404091904 _dVLOAD _y201402041028 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA370-380 | |
100 | 1 |
_aPavliotis, Grigorios A. _eautor _9304155 |
|
245 | 1 | 0 |
_aMultiscale Methods : _bAveraging and Homogenization / _cby Grigorios A. Pavliotis, Andrew M. Stuart. |
264 | 1 |
_aNew York, NY : _bSpringer New York, _c2008. |
|
300 |
_axviii, 310 páginas _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aTexts Applied in Mathematics, _x0939-2475 ; _v53 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aBackground -- Analysis -- Probability Theory and Stochastic Processes -- Ordinary Differential Equations -- Markov Chains -- Stochastic Differential Equations -- Partial Differential Equations -- Perturbation Expansions -- Invariant Manifolds for ODEs -- Averaging for Markov Chains -- Averaging for ODEs and SDEs -- Homogenization for ODEs and SDEs -- Homogenization for Elliptic PDEs -- Homogenization for Parabolic PDEs -- Averaging for Linear Transport and Parabolic PDEs -- Theory -- Invariant Manifolds for ODEs: The Convergence Theorem -- Averaging for Markov Chains: The Convergence Theorem -- Averaging for SDEs: The Convergence Theorem -- Homogenization for SDEs: The Convergence Theorem -- Homogenization for Elliptic PDEs: The Convergence Theorem -- Homogenization for Elliptic PDEs: The Convergence Theorem -- Averaging for Linear Transport and Parabolic PDEs: The Convergence Theorem. | |
520 | _aThis introduction to multiscale methods gives readers a broad overview of the many uses and applications of the methods. The book begins by setting the theoretical foundations of the subject area, and moves on to develop a unified approach to the simplification of a wide range of problems which possess multiple scales, via perturbation expansions; differential equations and stochastic processes are studied in one unified framework. The book concludes with an overview of a range of theoretical tools used to justify the simplified models derived via the perturbation expansions. The presentation of the material is particularly suited to the range of mathematicians, scientists and engineers who want to exploit multiscale methods in applications. Extensive use of examples shows how to apply multiscale methods to solving a variety of problems. Exercises then enable readers to build their own skills and put them into practice. Extensions and generalizations of the results presented in the book, as well as references to the literature, are provided in the Discussion and Bibliography section at the end of each chapter. All of the twenty-one chapters are supplemented with exercises. Grigorios Pavliotis is a Lecturer of Mathematics at Imperial College London. Andrew Stuart is a Professor of Mathematics at Warwick University. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aStuart, Andrew M. _eautor _9304156 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780387738284 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-73829-1 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c279685 _d279685 |