000 03417nam a22003855i 4500
001 279691
003 MX-SnUAN
005 20160429153955.0
007 cr nn 008mamaa
008 150903s2008 xxu| o |||| 0|eng d
020 _a9780387752174
_99780387752174
024 7 _a10.1007/9780387752174
_2doi
035 _avtls000332574
039 9 _a201509030756
_bVLOAD
_c201404122204
_dVLOAD
_c201404091934
_dVLOAD
_y201402041032
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA299.6-433
100 1 _aBardos, Claude.
_eeditor.
_9304160
245 1 0 _aInstability in Models Connected with Fluid Flows I /
_cedited by Claude Bardos, Andrei Fursikov.
264 1 _aNew York, NY :
_bSpringer New York,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aInternational Mathematical Series,
_x1571-5485 ;
_v6
500 _aSpringer eBooks
505 0 _aSolid Controllability in Fluid Dynamics -- Analyticity of Periodic Solutions of the 2D Boussinesq System -- Nonlinear Dynamics of a System of Particle-Like Wavepackets -- Attractors for Nonautonomous Navier–Stokes System and Other Partial Differential Equations -- Recent Results in Large Amplitude Monophase Nonlinear Geometric Optics -- Existence Theorems for the 3D–Navier–Stokes System Having as Initial Conditions Sums of Plane Waves -- Bursting Dynamics of the 3D Euler Equations in Cylindrical Domains -- Increased Stability in the Cauchy Problem for Some Elliptic Equations.
520 _aInstability in Models Connected with Fluid Flows I presents chapters from world renowned specialists. The stability of mathematical models simulating physical processes is discussed in topics on control theory, first order linear and nonlinear equations, water waves, free boundary problems, large time asymptotics of solutions, stochastic equations, Euler equations, Navier-Stokes equations, and other PDEs of fluid mechanics. Fields covered include: controllability and accessibility properties of the Navier- Stokes and Euler systems, nonlinear dynamics of particle-like wavepackets, attractors of nonautonomous Navier-Stokes systems, large amplitude monophase nonlinear geometric optics, existence results for 3D Navier-Stokes equations and smoothness results for 2D Boussinesq equations, instability of incompressible Euler equations, increased stability in the Cauchy problem for elliptic equations. Contributors include: Andrey Agrachev (Italy-Russia) and Andrey Sarychev (Italy); Maxim Arnold (Russia); Anatoli Babin (USA) and Alexander Figotin (USA); Vladimir Chepyzhov (Russia) and Mark Vishik (Russia); Christophe Cheverry (France); Efim Dinaburg (Russia) and Yakov Sinai (USA-Russia); Francois Golse (France), Alex Mahalov (USA), and Basil Nicolaenko (USA); Victor Isakov (USA)
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aFursikov, Andrei.
_eeditor.
_9304161
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387752167
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-75217-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c279691
_d279691