000 03599nam a22003615i 4500
001 279766
003 MX-SnUAN
005 20160429153957.0
007 cr nn 008mamaa
008 150903s2009 xxu| o |||| 0|eng d
020 _a9780387683249
_99780387683249
024 7 _a10.1007/b98977
_2doi
035 _avtls000331851
039 9 _a201509031104
_bVLOAD
_c201405070518
_dVLOAD
_y201402041014
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
100 1 _aRotman, Joseph J.
_eautor
_9304269
245 1 3 _aAn Introduction to Homological Algebra /
_cby Joseph J. Rotman.
264 1 _aNew York, NY :
_bSpringer New York,
_c2009.
300 _axiv, 710 páginas 11 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUniversitext
500 _aSpringer eBooks
505 0 _aHom and Tensor -- Special Modules -- Specific Rings -- Setting the Stage -- Homology -- Tor and Ext -- Homology and Rings -- Homology and Groups -- Spectral Sequences.
520 _aWith a wealth of examples as well as abundant applications to Algebra, this is a must-read work: a clearly written, easy-to-follow guide to Homological Algebra. The author provides a treatment of Homological Algebra which approaches the subject in terms of its origins in algebraic topology. In this brand new edition the text has been fully updated and revised throughout and new material on sheaves and abelian categories has been added. Applications include the following: * to rings -- Lazard's theorem that flat modules are direct limits of free modules, Hilbert's Syzygy Theorem, Quillen-Suslin's solution of Serre's problem about projectives over polynomial rings, Serre-Auslander-Buchsbaum characterization of regular local rings (and a sketch of unique factorization); * to groups -- Schur-Zassenhaus, Gaschutz's theorem on outer automorphisms of finite p-groups, Schur multiplier, cotorsion groups; * to sheaves -- sheaf cohomology, Cech cohomology, discussion of Riemann-Roch Theorem over compact Riemann surfaces. Learning Homological Algebra is a two-stage affair. Firstly, one must learn the language of Ext and Tor, and what this describes. Secondly, one must be able to compute these things using a separate language: that of spectral sequences. The basic properties of spectral sequences are developed using exact couples. All is done in the context of bicomplexes, for almost all applications of spectral sequences involve indices. Applications include Grothendieck spectral sequences, change of rings, Lyndon-Hochschild-Serre sequence, and theorems of Leray and Cartan computing sheaf cohomology. Joseph Rotman is Professor Emeritus of Mathematics at the University of Illinois at Urbana-Champaign. He is the author of numerous successful textbooks, including Advanced Modern Algebra (Prentice-Hall 2002), Galois Theory, 2nd Edition (Springer 1998) A First Course in Abstract Algebra (Prentice-Hall 1996), Introduction to the Theory of Groups, 4th Edition (Springer 1995), and Introduction to Algebraic Topology (Springer 1988).
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387245270
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b98977
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c279766
_d279766