000 03350nam a22003975i 4500
001 279775
003 MX-SnUAN
005 20160429153958.0
007 cr nn 008mamaa
008 150903s2007 xxu| o |||| 0|eng d
020 _a9780387689159
_99780387689159
024 7 _a10.1007/9780387689159
_2doi
035 _avtls000331950
039 9 _a201509030203
_bVLOAD
_c201404121957
_dVLOAD
_c201404091724
_dVLOAD
_y201402041016
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA319-329.9
100 1 _aHájek, Petr.
_eautor
_9304282
245 1 0 _aBiorthogonal Systems in Banach Spaces /
_cby Petr Hájek, Vicente Montesinos Santalucía, Jon Vanderwerff, Václav Zizler.
264 1 _aNew York, NY :
_bSpringer New York,
_c2007.
300 _axviii, 342 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aSeparable Banach Spaces -- Universality and the Szlenk Index -- Review of Weak Topology and Renormings -- Biorthogonal Systems in Nonseparable Spaces -- Markushevich Bases -- Weak Compact Generating -- Transfinite Sequence Spaces -- More Applications.
520 _aThe main theme of this book is the relation between the global structure of Banach spaces and the various types of generalized "coordinate systems" - or "bases" - they possess. This subject is not new and has been investigated since the inception of the study of Banach spaces. In this book, the authors systematically investigate the concepts of Markushevich bases, fundamental systems, total systems and their variants. The material naturally splits into the case of separable Banach spaces, as is treated in the first two chapters, and the nonseparable case, which is covered in the remainder of the book. This book contains new results, and a substantial portion of this material has never before appeared in book form. The book will be of interest to both researchers and graduate students. Topics covered in this book include: - Biorthogonal Systems in Separable Banach Spaces - Universality and Szlenk Index - Weak Topologies and Renormings - Biorthogonal Systems in Nonseparable Spaces - Transfinite Sequence Spaces - Applications Petr Hájek is Professor of Mathematics at the Mathematical Institute of the Academy of Sciences of the Czech Republic. Vicente Montesinos is Professor of Mathematics at the Polytechnic University of Valencia, Spain. Jon Vanderwerff is Professor of Mathematics at La Sierra University, in Riverside, California. Václav Zizler is Professor of Mathematics at the Mathematical Institute of the Academy of Sciences of the Czech Republic.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aSantalucía, Vicente Montesinos.
_eautor
_9304283
700 1 _aVanderwerff, Jon.
_eautor
_9304284
700 1 _aZizler, Václav.
_eautor
_9304285
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387689142
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-68915-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c279775
_d279775