000 | 03370nam a22004215i 4500 | ||
---|---|---|---|
001 | 279784 | ||
003 | MX-SnUAN | ||
005 | 20170705134202.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2009 xxu| o |||| 0|eng d | ||
020 |
_a9780387692777 _99780387692777 |
||
024 | 7 |
_a10.1007/9780387692777 _2doi |
|
035 | _avtls000332014 | ||
039 | 9 |
_a201509030212 _bVLOAD _c201404122009 _dVLOAD _c201404091735 _dVLOAD _y201402041018 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA315-316 | |
100 | 1 |
_aScherzer, Otmar. _eautor _9304297 |
|
245 | 1 | 0 |
_aVariational Methods in Imaging / _cby Otmar Scherzer, Markus Grasmair, Harald Grossauer, Markus Haltmeier, Frank Lenzen. |
264 | 1 |
_aNew York, NY : _bSpringer New York, _c2009. |
|
300 | _brecurso en línea. | ||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aApplied Mathematical Sciences, _x0066-5452 ; _v167 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aFundamentals of Imaging -- Case Examples of Imaging -- Image and Noise Models -- Regularization -- Variational Regularization Methods for the Solution of Inverse Problems -- Convex Regularization Methods for Denoising -- Variational Calculus for Non-convex Regularization -- Semi-group Theory and Scale Spaces -- Inverse Scale Spaces -- Mathematical Foundations -- Functional Analysis -- Weakly Differentiable Functions -- Convex Analysis and Calculus of Variations. | |
520 | _aThis book is devoted to the study of variational methods in imaging. The presentation is mathematically rigorous and covers a detailed treatment of the approach from an inverse problems point of view. Key Features: - Introduces variational methods with motivation from the deterministic, geometric, and stochastic point of view - Bridges the gap between regularization theory in image analysis and in inverse problems - Presents case examples in imaging to illustrate the use of variational methods e.g. denoising, thermoacoustics, computerized tomography - Discusses link between non-convex calculus of variations, morphological analysis, and level set methods - Analyses variational methods containing classical analysis of variational methods, modern analysis such as G-norm properties, and non-convex calculus of variations - Uses numerical examples to enhance the theory This book is geared towards graduate students and researchers in applied mathematics. It can serve as a main text for graduate courses in image processing and inverse problems or as a supplemental text for courses on regularization. Researchers and computer scientists in the area of imaging science will also find this book useful. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aGrasmair, Markus. _eautor _9304298 |
|
700 | 1 |
_aGrossauer, Harald. _eautor _9304299 |
|
700 | 1 |
_aHaltmeier, Markus. _eautor _9304300 |
|
700 | 1 |
_aLenzen, Frank. _eautor _9304301 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780387309316 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-69277-7 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c279784 _d279784 |