000 03370nam a22004215i 4500
001 279784
003 MX-SnUAN
005 20170705134202.0
007 cr nn 008mamaa
008 150903s2009 xxu| o |||| 0|eng d
020 _a9780387692777
_99780387692777
024 7 _a10.1007/9780387692777
_2doi
035 _avtls000332014
039 9 _a201509030212
_bVLOAD
_c201404122009
_dVLOAD
_c201404091735
_dVLOAD
_y201402041018
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA315-316
100 1 _aScherzer, Otmar.
_eautor
_9304297
245 1 0 _aVariational Methods in Imaging /
_cby Otmar Scherzer, Markus Grasmair, Harald Grossauer, Markus Haltmeier, Frank Lenzen.
264 1 _aNew York, NY :
_bSpringer New York,
_c2009.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aApplied Mathematical Sciences,
_x0066-5452 ;
_v167
500 _aSpringer eBooks
505 0 _aFundamentals of Imaging -- Case Examples of Imaging -- Image and Noise Models -- Regularization -- Variational Regularization Methods for the Solution of Inverse Problems -- Convex Regularization Methods for Denoising -- Variational Calculus for Non-convex Regularization -- Semi-group Theory and Scale Spaces -- Inverse Scale Spaces -- Mathematical Foundations -- Functional Analysis -- Weakly Differentiable Functions -- Convex Analysis and Calculus of Variations.
520 _aThis book is devoted to the study of variational methods in imaging. The presentation is mathematically rigorous and covers a detailed treatment of the approach from an inverse problems point of view. Key Features: - Introduces variational methods with motivation from the deterministic, geometric, and stochastic point of view - Bridges the gap between regularization theory in image analysis and in inverse problems - Presents case examples in imaging to illustrate the use of variational methods e.g. denoising, thermoacoustics, computerized tomography - Discusses link between non-convex calculus of variations, morphological analysis, and level set methods - Analyses variational methods containing classical analysis of variational methods, modern analysis such as G-norm properties, and non-convex calculus of variations - Uses numerical examples to enhance the theory This book is geared towards graduate students and researchers in applied mathematics. It can serve as a main text for graduate courses in image processing and inverse problems or as a supplemental text for courses on regularization. Researchers and computer scientists in the area of imaging science will also find this book useful.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aGrasmair, Markus.
_eautor
_9304298
700 1 _aGrossauer, Harald.
_eautor
_9304299
700 1 _aHaltmeier, Markus.
_eautor
_9304300
700 1 _aLenzen, Frank.
_eautor
_9304301
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387309316
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-69277-7
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c279784
_d279784