000 03623nam a22003615i 4500
001 279869
003 MX-SnUAN
005 20160429154001.0
007 cr nn 008mamaa
008 150903s2011 xxu| o |||| 0|eng d
020 _a9780387487441
_99780387487441
024 7 _a10.1007/9780387487441
_2doi
035 _avtls000331586
039 9 _a201509030755
_bVLOAD
_c201404121907
_dVLOAD
_c201404091635
_dVLOAD
_c201401311420
_dstaff
_y201401301213
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA21-27
100 1 _aKrantz, Steven G.
_eautor
_9304431
245 1 4 _aThe Proof is in the Pudding :
_bThe Changing Nature of Mathematical Proof /
_cby Steven G. Krantz.
264 1 _aNew York, NY :
_bSpringer New York,
_c2011.
300 _axvii, 264 páginas, 88 ilustraciones, 5 ilustraciones en color.
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _a1. What is a Proof and Why? -- 2. The Ancients -- 3. The Middle Ages and Calculation -- 4. The Dawn of the Modern Age -- 5. Hilbert and the Twentieth Century -- 6. The Four-Color Theorem -- 7. Computer-Generated Proofs -- 8. The Computer as a Mathematical Aid -- 9. Aspects of Mathematical Life -- 10. The Sociology of Mathematical Proof -- 11. A Legacy of Elusive Proofs -- 12. John Horgan and "The Death of Proof" -- 13. Closing Thoughts -- Index of Names -- References -- Index.
520 _aKrantz’s book covers the full history and evolution of the proof concept.   The notion of rigorous thinking has evolved over time, and this book documents that development.   It gives examples both of decisive developments in the technique of proof and also of magnificent blunders that taught us about how to think rigorously.  Many historical vignettes illustrate the concepts and acquaint the reader with how mathematicians think and what they care about. In modern times, strict rules for generating and recording proof have been established.  At the same time, many new vectors and forces have had an influence over the way mathematics is practiced.  Certainly the computer plays a fundamental role in many mathematical investigations. But there are also fascinating social forces that have affected the way that we now conceive of proof.   Daniel Gorenstein’s program to classify the finite simple groups, Thomas Hales’s  resolution of the Kepler sphere-packing problem, Louis de Branges’s proof of the Bieberbach conjecture, and Thurston’s treatment of the geometrization program are but some examples of mathematical proofs that were generated in ways inconceivable 100 years ago.  Krantz treats all of them---and more---in some detail; he names the players and tells all the secrets. Many of the proofs treated in this book are described in some detail, with figures and explanatory equations. The reader is given a dose of modern mathematics, and how mathematicians think.   Both the joy and the sorrow of mathematical exploration are communicated dynamically and energetically in this exciting new book.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387489087
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-48744-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c279869
_d279869