000 03965nam a22003735i 4500
001 279955
003 MX-SnUAN
005 20160429154004.0
007 cr nn 008mamaa
008 150903s2009 xxu| o |||| 0|eng d
020 _a9780387689227
_99780387689227
024 7 _a10.1007/b13382
_2doi
035 _avtls000331953
039 9 _a201509031112
_bVLOAD
_c201405070501
_dVLOAD
_y201402041017
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
100 1 _aGunzburger, Max D.
_eautor
_9304566
245 1 0 _aLeast-Squares Finite Element Methods /
_cby Max D. Gunzburger, Pavel B. Bochev.
264 1 _aNew York, NY :
_bSpringer New York,
_c2009.
300 _axxii, 660 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aApplied Mathematical Sciences,
_x0066-5452 ;
_v166
500 _aSpringer eBooks
505 0 _aSurvey of Variational Principles and Associated Finite Element Methods. -- Classical Variational Methods -- Alternative Variational Formulations -- Abstract Theory of Least-Squares Finite Element Methods -- Mathematical Foundations of Least-Squares Finite Element Methods -- The Agmon–Douglis–Nirenberg Setting for Least-Squares Finite Element Methods -- Least-Squares Finite Element Methods for Elliptic Problems -- Scalar Elliptic Equations -- Vector Elliptic Equations -- The Stokes Equations -- Least-Squares Finite Element Methods for Other Settings -- The Navier–Stokes Equations -- Parabolic Partial Differential Equations -- Hyperbolic Partial Differential Equations -- Control and Optimization Problems -- Variations on Least-Squares Finite Element Methods -- Supplementary Material -- Analysis Tools -- Compatible Finite Element Spaces -- Linear Operator Equations in Hilbert Spaces -- The Agmon–Douglis–Nirenberg Theory and Verifying its Assumptions.
520 _aThe book examines theoretical and computational aspects of least-squares finite element methods(LSFEMs) for partial differential equations (PDEs) arising in key science and engineering applications. It is intended for mathematicians, scientists, and engineers interested in either or both the theory and practice associated with the numerical solution of PDEs. The first part looks at strengths and weaknesses of classical variational principles, reviews alternative variational formulations, and offers a glimpse at the main concepts that enter into the formulation of LSFEMs. Subsequent parts introduce mathematical frameworks for LSFEMs and their analysis, apply the frameworks to concrete PDEs, and discuss computational properties of resulting LSFEMs. Also included are recent advances such as compatible LSFEMs, negative-norm LSFEMs, and LSFEMs for optimal control and design problems. Numerical examples illustrate key aspects of the theory ranging from the importance of norm-equivalence to connections between compatible LSFEMs and classical-Galerkin and mixed-Galerkin methods. Pavel Bochev is a Distinguished Member of the Technical Staff at Sandia National Laboratories with research interests in compatible discretizations for PDEs, multiphysics problems, and scientific computing. Max Gunzburger is Frances Eppes Professor of Scientific Computing and Mathematics at Florida State University and recipient of the W.T. and Idelia Reid Prize in Mathematics from the Society for Industrial and Applied Mathematics.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aBochev, Pavel B.
_eautor
_9301477
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387308883
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/b13382
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c279955
_d279955