000 06072nam a22003855i 4500
001 279961
003 MX-SnUAN
005 20160429154004.0
007 cr nn 008mamaa
008 150903s2009 xxu| o |||| 0|eng d
020 _a9780387488073
_99780387488073
024 7 _a10.1007/9780387488073
_2doi
035 _avtls000331591
039 9 _a201509030733
_bVLOAD
_c201404121908
_dVLOAD
_c201404091636
_dVLOAD
_c201401311420
_dstaff
_y201401301213
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aT57-57.97
100 1 _aOldham, Keit.
_eautor
_9304573
245 1 3 _aAn Atlas of Functions :
_bwith Equator, the Atlas Function Calculator /
_cby Keit Oldham, Jan Myland, Jerome Spanier.
264 1 _aNew York, NY :
_bSpringer US,
_c2009.
300 _axii, 750 páginas,
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aGeneral Considerations -- The Constant Function c -- The Factorial Function n! -- The Zeta Numbers and Related Functions -- The Bernoulli Numbers B n -- The Euler Numbers E n -- The Binomial Coefficients -- The Linear Function bx + c and Its Reciprocal -- Modifying Functions -- The Heaviside u(x?a) And Dirac ?(x?a) Functions -- The Integer Powers x n And (bx+c) n -- The Square-Root Function and Its Reciprocal -- The Noninteger Powers x v -- The Semielliptic Function and Its Reciprocal -- The Semihyperbolic Functions And Their Reciprocals -- The Quadratic Function ax 2+bx+c and Its Reciprocal -- The Cubic Function x 3 + ax 2 + bx + c -- Polynomial Functions -- The Pochhammer Polynomials (x) n -- The Bernoulli Polynomials B n (x) -- The Euler Polynomials E n (x) -- The Legendre Polynomials P n (x) -- The Chebyshev Polynomials T n (x) and U n (x) -- The Laguerre Polynomials L n (x) -- The Hermite Polynomials H n (x) -- The Logarithmic Function ln(x) -- The Exponential Function exp(±x) -- Exponentials of Powers exp(± x v ) -- The Hyperbolic Cosine Cosh(x) and Sine Sinh(x) Functions -- The Hyperbolic Secant Sech(x) and Cosecant Csch(x) Functions -- The Hyperbolic Tangent tanh(x) and Cotangent coth(x) Functions -- The Inverse Hyperbolic Functions -- The Cosine cos(x) and Sine sin(x) Functions -- The Secant sec(x) And cosecant csc(x) Functions -- The Tangent tan(x) and Cotangent cot(x) Functions -- The Inverse Circular Functions -- Periodic Functions -- The Exponential Integrals Ei(x) and Ein(x) -- Sine and Cosine Integrals -- The Fresnel Integrals C(x) and S(x) -- The Error Function erf(x) and Its Complement erfc(x) -- The and Related Functions -- Dawson’s Integral daw(x) -- The Gamma Function ?(v) -- The Digamma Function ?(v) -- The Incomplete Gamma Functions -- The Parabolic Cylinder Function D v (x) -- The Kummer Function M(a,c,x) -- The Tricomi Function U(a,c,x) -- The Modified Bessel Functions I n (x) of Integer Order -- The Modified Bessel Function I v (x) of Arbitrary Order -- The Macdonald Function K v (x) -- The Bessel Functions J n (x) of Integer Order -- The Bessel Function J v (x) of Arbitrary Order -- The Neumann Function Y v (x) -- The Kelvin Functions -- The Airy Functions Ai(x) and Bi(x) -- The Struve Function h v (x) -- The Incomplete Beta Function B(v,?,x) -- The Legendre Functions P v (x) and Q v (x) -- The Gauss Hypergeometric Function F(a,b,c,x) -- The Complete Elliptic Integrals K(k) and E(k) -- The Incomplete Elliptic Integrals F(k,?) AND E(k,?) -- The Jacobian Elliptic Functions -- The Hurwitz Function ?(v, u).
520 _aThis second edition of An Atlas of Functions, with Equator, the Atlas Function Calculator, provides comprehensive information on several hundred functions or function families of interest to scientists, engineers and mathematicians who are concerned with the quantitative aspects of their field. Beginning with simple integer-valued functions, the book progresses to polynomials, exponential, trigonometric, Bessel, and hypergeometric functions, and many more. The 65 chapters are arranged roughly in order of increasing complexity, mathematical sophistication being kept to a minimum while stressing utility throughout. In addition to providing definitions and simple properties for every function, each chapter catalogs more complex interrelationships as well as the derivatives, integrals, Laplace transforms and other characteristics of the function. Numerous color figures in two- or three- dimensions depict their shape and qualitative features and flesh out the reader’s familiarity with the functions. In many instances, the chapter concludes with a concise exposition on a topic in applied mathematics associated with the particular function or function family. Features that make the Atlas an invaluable reference tool, yet simple to use, include: full coverage of those functions—elementary and "special”—that meet everyday needs a standardized chapter format, making it easy to locate needed information on such aspects as: nomenclature, general behavior, definitions, intrarelationships, expansions, approximations, limits, and response to operations of the calculus extensive cross-referencing and comprehensive indexing, with useful appendices the inclusion of innovative software--Equator, the Atlas Function Calculator the inclusion of new material dealing with interesting applications of many of the function families, building upon the favorable responses to similar material in the first edition.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aMyland, Jan.
_eautor
_9304574
700 1 _aSpanier, Jerome.
_eautor
_9304575
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387488066
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-48807-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c279961
_d279961