000 02983nam a22003735i 4500
001 279968
003 MX-SnUAN
005 20160429154005.0
007 cr nn 008mamaa
008 150903s2007 xxu| o |||| 0|eng d
020 _a9780387693163
_99780387693163
024 7 _a10.1007/9780387693163
_2doi
035 _avtls000332018
039 9 _a201509030212
_bVLOAD
_c201404122010
_dVLOAD
_c201404091736
_dVLOAD
_y201402041018
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA299.6-433
100 1 _aHijab, Omar.
_eautor
_9304583
245 1 0 _aIntroduction to Calculus and Classical Analysis /
_cby Omar Hijab.
264 1 _aNew York, NY :
_bSpringer New York,
_c2007.
300 _ax, 3437 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUndergraduate Texts in Mathematics,
_x0172-6056
500 _aSpringer eBooks
505 0 _aThe Set of Real Numbers -- Continuity -- Differentiation -- Integration -- Applications.
520 _aThis text is intended for an honors calculus course or for an introduction to analysis. Involving rigorous analysis, computational dexterity, and a breadth of applications, it is ideal for undergraduate majors. This second edition includes corrections as well as some additional material. Some features of the text: * The text is completely self-contained and starts with the real number axioms; * the integral is defined as the area under the graph, while the area is defined for every subset of the plane; * there is a heavy emphasis on computational problems, from the high-school quadratic formula to the formula for the derivative of the zeta function at zero; * there are applications from many parts of analysis, e.g., convexity, the Cantor set, continued fractions, the AGM, the theta and zeta functions, transcendental numbers, the Bessel and gamma functions, and many more; * traditionally transcendentally presented material, such as infinite products, the Bernoulli series, and the zeta functional equation, is developed over the reals; * there are 366 problems. About the first edition: This is a very intriguing, decidedly unusual, and very satisfying treatment of calculus and introductory analysis. It's full of quirky little approaches to standard topics that make one wonder over and over again, "Why is it never done like this?" John Allen Paulos, author of Innumeracy and A Mathematician Reads the Newspaper
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387693156
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-69316-3
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c279968
_d279968