000 03641nam a22003855i 4500
001 279988
003 MX-SnUAN
005 20160429154006.0
007 cr nn 008mamaa
008 150903s2008 xxu| o |||| 0|eng d
020 _a9780387728315
_99780387728315
024 7 _a10.1007/9780387728315
_2doi
035 _avtls000332308
039 9 _a201509030758
_bVLOAD
_c201404122112
_dVLOAD
_c201404091842
_dVLOAD
_y201402041026
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA184-205
100 1 _aRoman, Steven.
_eautor
_9301956
245 1 0 _aAdvanced Linear Algebra /
_cby Steven Roman.
250 _aThird Edition.
264 1 _aNew York, NY :
_bSpringer New York,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aGraduate Texts in Mathematics,
_x0072-5285 ;
_v135
500 _aSpringer eBooks
505 0 _aBasic Linear Algebra -- Vector Spaces -- Linear Transformations -- The Isomorphism Theorems -- Modules I: Basic Properties -- Modules II: Free and Noetherian Modules -- Modules over a Principal Ideal Domain -- The Structure of a Linear Operator -- Eigenvalues and Eigenvectors -- Real and Complex Inner Product Spaces -- Structure Theory for Normal Operators -- Topics -- Metric Vector Spaces: The Theory of Bilinear Forms -- Metric Spaces -- Hilbert Spaces -- Tensor Products -- Positive Solutions to Linear Systems: Convexity and Separation -- Affine Geometry -- Singular Values and the Moore–Penrose Inverse -- An Introduction to Algebras -- The Umbral Calculus.
520 _aFor the third edition, the author has added a new chapter on associative algebras that includes the well known characterizations of the finite-dimensional division algebras over the real field (a theorem of Frobenius) and over a finite field (Wedderburn's theorem); polished and refined some arguments (such as the discussion of reflexivity, the rational canonical form, best approximations and the definitions of tensor products); upgraded some proofs that were originally done only for finite-dimensional/rank cases; added new theorems, including the spectral mapping theorem; considerably expanded the reference section with over a hundred references to books on linear algebra. From the reviews of the second edition: "In this 2nd edition, the author has rewritten the entire book and has added more than 100 pages of new materials....As in the previous edition, the text is well written and gives a thorough discussion of many topics of linear algebra and related fields...the exercises are rewritten and expanded....Overall, I found the book a very useful one....It is a suitable choice as a graduate text or as a reference book." Ali-Akbar Jafarian, ZentralblattMATH "This is a formidable volume, a compendium of linear algebra theory, classical and modern... The development of the subject is elegant...The proofs are neat...The exercise sets are good, with occasional hints given for the solution of trickier problems...It represents linear algebra and does so comprehensively." Henry Ricardo, MAA Online
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387728285
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-72831-5
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c279988
_d279988