000 03603nam a22003735i 4500
001 280233
003 MX-SnUAN
005 20170705134203.0
007 cr nn 008mamaa
008 150903s2008 xxu| o |||| 0|eng d
020 _a9780387481012
_99780387481012
024 7 _a10.1007/9780387481012
_2doi
035 _avtls000331556
039 9 _a201509030755
_bVLOAD
_c201404121902
_dVLOAD
_c201404091630
_dVLOAD
_c201401311419
_dstaff
_y201401301212
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA613-613.8
100 1 _aTu, Loring W.
_eautor
_9305037
245 1 3 _aAn Introduction to Manifolds /
_cby Loring W. Tu.
264 1 _aNew York, NY :
_bSpringer New York,
_c2008.
300 _axvI, 368 páginas, 104 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aUniversitext
500 _aSpringer eBooks
505 0 _aEuclidean Spaces -- Smooth Functions on a Euclidean Space -- Tangent Vectors in Rn as Derivations -- Alternating k-Linear Functions -- Differential Forms on Rn -- Manifolds -- Manifolds -- Smooth Maps on a Manifold -- Quotients -- Lie Groups and Lie Algebras -- The Tangent Space -- Submanifolds -- Categories and Functors -- The Rank of a Smooth Map -- The Tangent Bundle -- Bump Functions and Partitions of Unity -- Vector Fields -- Lie Groups and Lie Algebras -- Lie Groups -- Lie Algebras -- Differential Forms -- Differential 1-Forms -- Differential k-Forms -- The Exterior Derivative -- Integration -- Orientations -- Manifolds with Boundary -- Integration on a Manifold -- De Rham Theory -- De Rham Cohomology -- The Long Exact Sequence in Cohomology -- The Mayer–Vietoris Sequence -- Homotopy Invariance -- Computation of de Rham Cohomology -- Proof of Homotopy Invariance.
520 _aManifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, An Introduction to Manifolds is also an excellent foundation for Springer GTM 82, Differential Forms in Algebraic Topology.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387480985
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-48101-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280233
_d280233