000 03537nam a22003735i 4500
001 280301
003 MX-SnUAN
005 20160429154018.0
007 cr nn 008mamaa
008 150903s2007 xxu| o |||| 0|eng d
020 _a9780387712659
_99780387712659
024 7 _a10.1007/9780387712659
_2doi
035 _avtls000332124
039 9 _a201509030216
_bVLOAD
_c201404122029
_dVLOAD
_c201404091758
_dVLOAD
_y201402041021
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aH61-61.95
100 1 _aLynch, Scott M.
_eeditor.
_9305146
245 1 0 _aIntroduction to Applied Bayesian Statistics and Estimation for Social Scientists /
_cedited by Scott M. Lynch.
264 1 _aNew York, NY :
_bSpringer New York,
_c2007.
300 _axxviii, 359 páginas
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aStatistics for Social and Behavioral Sciences
500 _aSpringer eBooks
505 0 _aProbability Theory and Classical Statistics -- Basics of Bayesian Statistics -- Modern Model Estimation Part 1: Gibbs Sampling -- Modern Model Estimation Part 2: Metroplis–Hastings Sampling -- Evaluating Markov Chain Monte Carlo Algorithms and Model Fit -- The Linear Regression Model -- Generalized Linear Models -- to Hierarchical Models -- to Multivariate Regression Models -- Conclusion.
520 _aIntroduction to Applied Bayesian Statistics and Estimation for Social Scientists covers the complete process of Bayesian statistical analysis in great detail from the development of a model through the process of making statistical inference. The key feature of this book is that it covers models that are most commonly used in social science research, including the linear regression model, generalized linear models, hierarchical models, and multivariate regression models, and it thoroughly develops each real-data example in painstaking detail. The first part of the book provides a detailed introduction to mathematical statistics and the Bayesian approach to statistics, as well as a thorough explanation of the rationale for using simulation methods to construct summaries of posterior distributions. Markov chain Monte Carlo (MCMC) methods—including the Gibbs sampler and the Metropolis-Hastings algorithm—are then introduced as general methods for simulating samples from distributions. Extensive discussion of programming MCMC algorithms, monitoring their performance, and improving them is provided before turning to the larger examples involving real social science models and data. Scott M. Lynch is an associate professor in the Department of Sociology and Office of Population Research at Princeton University. His substantive research interests are in changes in racial and socioeconomic inequalities in health and mortality across age and time. His methodological interests are in the use of Bayesian stastistics in sociology and demography generally and in multistate life table methodology specifically.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387712642
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-71265-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280301
_d280301