000 | 03588nam a22004095i 4500 | ||
---|---|---|---|
001 | 280310 | ||
003 | MX-SnUAN | ||
005 | 20160429154019.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2007 xxu| o |||| 0|eng d | ||
020 |
_a9780387721262 _99780387721262 |
||
024 | 7 |
_a10.1007/9780387721262 _2doi |
|
035 | _avtls000332229 | ||
039 | 9 |
_a201509030757 _bVLOAD _c201404122055 _dVLOAD _c201404091826 _dVLOAD _y201402041024 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA241-247.5 | |
100 | 1 |
_aBorwein, Peter. _eeditor. _9305161 |
|
245 | 1 | 4 |
_aThe Riemann Hypothesis : _bA Resource for the Afficionado and Virtuoso Alike / _cedited by Peter Borwein, Stephen Choi, Brendan Rooney, Andrea Weirathmueller. |
264 | 1 |
_aNew York, NY : _bSpringer New York, _c2007. |
|
300 |
_axiv, 538 páginas 25 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aCanadian Mathematical Society Société mathématique du Canada, _x1613-5237 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _ato the Riemann Hypothesis -- Why This Book -- Analytic Preliminaries -- Algorithms for Calculating ?(s) -- Empirical Evidence -- Equivalent Statements -- Extensions of the Riemann Hypothesis -- Assuming the Riemann Hypothesis and Its Extensions … -- Failed Attempts at Proof -- Formulas -- Timeline -- Original Papers -- Expert Witnesses -- The Experts Speak for Themselves. | |
520 | _aThe Riemann Hypothesis has become the Holy Grail of mathematics in the century and a half since 1859 when Bernhard Riemann, one of the extraordinary mathematical talents of the 19th century, originally posed the problem. While the problem is notoriously difficult, and complicated even to state carefully, it can be loosely formulated as "the number of integers with an even number of prime factors is the same as the number of integers with an odd number of prime factors." The Hypothesis makes a very precise connection between two seemingly unrelated mathematical objects, namely prime numbers and the zeros of analytic functions. If solved, it would give us profound insight into number theory and, in particular, the nature of prime numbers. This book is an introduction to the theory surrounding the Riemann Hypothesis. Part I serves as a compendium of known results and as a primer for the material presented in the 20 original papers contained in Part II. The original papers place the material into historical context and illustrate the motivations for research on and around the Riemann Hypothesis. Several of these papers focus on computation of the zeta function, while others give proofs of the Prime Number Theorem, since the Prime Number Theorem is so closely connected to the Riemann Hypothesis. The text is suitable for a graduate course or seminar or simply as a reference for anyone interested in this extraordinary conjecture. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aChoi, Stephen. _eeditor. _9305162 |
|
700 | 1 |
_aRooney, Brendan. _eeditor. _9305163 |
|
700 | 1 |
_aWeirathmueller, Andrea. _eeditor. _9305164 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780387721255 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-72126-2 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c280310 _d280310 |