000 03588nam a22004095i 4500
001 280310
003 MX-SnUAN
005 20160429154019.0
007 cr nn 008mamaa
008 150903s2007 xxu| o |||| 0|eng d
020 _a9780387721262
_99780387721262
024 7 _a10.1007/9780387721262
_2doi
035 _avtls000332229
039 9 _a201509030757
_bVLOAD
_c201404122055
_dVLOAD
_c201404091826
_dVLOAD
_y201402041024
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA241-247.5
100 1 _aBorwein, Peter.
_eeditor.
_9305161
245 1 4 _aThe Riemann Hypothesis :
_bA Resource for the Afficionado and Virtuoso Alike /
_cedited by Peter Borwein, Stephen Choi, Brendan Rooney, Andrea Weirathmueller.
264 1 _aNew York, NY :
_bSpringer New York,
_c2007.
300 _axiv, 538 páginas 25 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aCanadian Mathematical Society Société mathématique du Canada,
_x1613-5237
500 _aSpringer eBooks
505 0 _ato the Riemann Hypothesis -- Why This Book -- Analytic Preliminaries -- Algorithms for Calculating ?(s) -- Empirical Evidence -- Equivalent Statements -- Extensions of the Riemann Hypothesis -- Assuming the Riemann Hypothesis and Its Extensions … -- Failed Attempts at Proof -- Formulas -- Timeline -- Original Papers -- Expert Witnesses -- The Experts Speak for Themselves.
520 _aThe Riemann Hypothesis has become the Holy Grail of mathematics in the century and a half since 1859 when Bernhard Riemann, one of the extraordinary mathematical talents of the 19th century, originally posed the problem. While the problem is notoriously difficult, and complicated even to state carefully, it can be loosely formulated as "the number of integers with an even number of prime factors is the same as the number of integers with an odd number of prime factors." The Hypothesis makes a very precise connection between two seemingly unrelated mathematical objects, namely prime numbers and the zeros of analytic functions. If solved, it would give us profound insight into number theory and, in particular, the nature of prime numbers. This book is an introduction to the theory surrounding the Riemann Hypothesis. Part I serves as a compendium of known results and as a primer for the material presented in the 20 original papers contained in Part II. The original papers place the material into historical context and illustrate the motivations for research on and around the Riemann Hypothesis. Several of these papers focus on computation of the zeta function, while others give proofs of the Prime Number Theorem, since the Prime Number Theorem is so closely connected to the Riemann Hypothesis. The text is suitable for a graduate course or seminar or simply as a reference for anyone interested in this extraordinary conjecture.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aChoi, Stephen.
_eeditor.
_9305162
700 1 _aRooney, Brendan.
_eeditor.
_9305163
700 1 _aWeirathmueller, Andrea.
_eeditor.
_9305164
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387721255
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-72126-2
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280310
_d280310