000 03054nam a22003615i 4500
001 280396
003 MX-SnUAN
005 20160429154022.0
007 cr nn 008mamaa
008 150903s2007 xxu| o |||| 0|eng d
020 _a9780387690827
_99780387690827
024 7 _a10.1007/9780387690827
_2doi
035 _avtls000331986
039 9 _a201509030204
_bVLOAD
_c201404122004
_dVLOAD
_c201404091730
_dVLOAD
_y201402041017
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA76.9.M35 
100 1 _aCao, Xi-Ren.
_eautor
_9305298
245 1 0 _aStochastic Learning and Optimization :
_bA Sensitivity-Based Approach /
_cby Xi-Ren Cao.
264 1 _aBoston, MA :
_bSpringer US,
_c2007.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aFour Disciplines in Learning and Optimization -- Perturbation Analysis -- Learning and Optimization with Perturbation Analysis -- Markov Decision Processes -- Sample-Path-Based Policy Iteration -- Reinforcement Learning -- Adaptive Control Problems as MDPs -- The Event-Based Optimization - A New Approach -- Event-Based Optimization of Markov Systems -- Constructing Sensitivity Formulas.
520 _aStochastic learning and optimization is a multidisciplinary subject that has wide applications in modern engineering, social, and financial problems, including those in Internet and wireless communications, manufacturing, robotics, logistics, biomedical systems, and investment science. This book is unique in the following aspects. (Four areas in one book) This book covers various disciplines in learning and optimization, including perturbation analysis (PA) of discrete-event dynamic systems, Markov decision processes (MDP)s), reinforcement learning (RL), and adaptive control, within a unified framework. (A simple approach to MDPs) This book introduces MDP theory through a simple approach based on performance difference formulas. This approach leads to results for the n-bias optimality with long-run average-cost criteria and Blackwell's optimality without discounting. (Event-based optimization) This book introduces the recently developed event-based optimization approach, which opens up a research direction in overcoming or alleviating the difficulties due to the curse of dimensionality issue by utilizing the system's special features. (Sample-path construction) This book emphasizes physical interpretations based on the sample-path construction.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387367873
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-69082-7
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280396
_d280396