000 | 03054nam a22003615i 4500 | ||
---|---|---|---|
001 | 280396 | ||
003 | MX-SnUAN | ||
005 | 20160429154022.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2007 xxu| o |||| 0|eng d | ||
020 |
_a9780387690827 _99780387690827 |
||
024 | 7 |
_a10.1007/9780387690827 _2doi |
|
035 | _avtls000331986 | ||
039 | 9 |
_a201509030204 _bVLOAD _c201404122004 _dVLOAD _c201404091730 _dVLOAD _y201402041017 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA76.9.M35 | |
100 | 1 |
_aCao, Xi-Ren. _eautor _9305298 |
|
245 | 1 | 0 |
_aStochastic Learning and Optimization : _bA Sensitivity-Based Approach / _cby Xi-Ren Cao. |
264 | 1 |
_aBoston, MA : _bSpringer US, _c2007. |
|
300 | _brecurso en línea. | ||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aFour Disciplines in Learning and Optimization -- Perturbation Analysis -- Learning and Optimization with Perturbation Analysis -- Markov Decision Processes -- Sample-Path-Based Policy Iteration -- Reinforcement Learning -- Adaptive Control Problems as MDPs -- The Event-Based Optimization - A New Approach -- Event-Based Optimization of Markov Systems -- Constructing Sensitivity Formulas. | |
520 | _aStochastic learning and optimization is a multidisciplinary subject that has wide applications in modern engineering, social, and financial problems, including those in Internet and wireless communications, manufacturing, robotics, logistics, biomedical systems, and investment science. This book is unique in the following aspects. (Four areas in one book) This book covers various disciplines in learning and optimization, including perturbation analysis (PA) of discrete-event dynamic systems, Markov decision processes (MDP)s), reinforcement learning (RL), and adaptive control, within a unified framework. (A simple approach to MDPs) This book introduces MDP theory through a simple approach based on performance difference formulas. This approach leads to results for the n-bias optimality with long-run average-cost criteria and Blackwell's optimality without discounting. (Event-based optimization) This book introduces the recently developed event-based optimization approach, which opens up a research direction in overcoming or alleviating the difficulties due to the curse of dimensionality issue by utilizing the system's special features. (Sample-path construction) This book emphasizes physical interpretations based on the sample-path construction. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780387367873 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-69082-7 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c280396 _d280396 |