000 03600nam a22003615i 4500
001 280455
003 MX-SnUAN
005 20160429154025.0
007 cr nn 008mamaa
008 150903s2011 xxu| o |||| 0|eng d
020 _a9780387721774
_99780387721774
024 7 _a10.1007/9780387721774
_2doi
035 _avtls000332235
039 9 _a201509030221
_bVLOAD
_c201404122057
_dVLOAD
_c201404091827
_dVLOAD
_y201402041024
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA331.5
100 1 _aBloch, Ethan D.
_eautor
_9305381
245 1 4 _aThe Real Numbers and Real Analysis /
_cby Ethan D. Bloch.
264 1 _aNew York, NY :
_bSpringer New York,
_c2011.
300 _axxviii, 553 páginas 42 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aPreface.-To the Student.-To the Instructor.- 1. Construction of the Real Numbers -- 2. Properties of the Real Numbers -- 3. Limits and Continuity -- 4. Differentiation -- 5. Integration -- 6. Limits to Infinity.-7. Transcental Functions.-8. Sequences -- 9. Series -- 10. Sequences and Series of Functions -- Bibliography -- Index.
520 _aThis text is a rigorous, detailed introduction to real analysis that presents the fundamentals with clear exposition and carefully written definitions, theorems, and proofs.  The choice of material and the flexible organization, including three different entryways into the study of the real numbers, making it equally appropriate to undergraduate mathematics majors who want to continue in mathematics, and to future mathematics teachers who want to understand the theory behind calculus.  The Real Numbers and Real Analysis is accessible to students who have prior experience with mathematical proofs and who have not previously studied real analysis. The text includes over 350 exercises.   Key features of this textbook:   - provides an unusually thorough treatment of the real numbers, emphasizing their importance as the basis of real analysis   - presents material in an order resembling that of standard calculus courses, for the sake of student familiarity, and for helping future teachers use real analysis to better understand calculus   - emphasizes the direct role of the Least Upper Bound Property in the study of limits, derivatives and integrals, rather than relying upon sequences for proofs; presents the equivalence of various important theorems of real analysis with the Least Upper Bound Property   - includes a thorough discussion of some topics, such as decimal expansion of real numbers, transcendental functions, area and the number p, that relate to calculus but that are not always treated in detail in real analysis texts   - offers substantial historical material in each chapter   This book will serve as an excellent one-semester text for undergraduates majoring in mathematics, and for students in mathematics education who want a thorough understanding of the theory behind the real number system and calculus.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780387721767
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-387-72177-4
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280455
_d280455