000 02885nam a22003735i 4500
001 280491
003 MX-SnUAN
005 20160429154026.0
007 cr nn 008mamaa
008 150903s2011 xxk| o |||| 0|eng d
020 _a9780857291929
_99780857291929
024 7 _a10.1007/9780857291929
_2doi
035 _avtls000333834
039 9 _a201509030241
_bVLOAD
_c201404130542
_dVLOAD
_c201404092331
_dVLOAD
_y201402041133
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA331.5
100 1 _aShirali, Satish.
_eautor
_9305447
245 1 0 _aMultivariable Analysis /
_cby Satish Shirali, Harkrishan Lal Vasudeva.
264 1 _aLondon :
_bSpringer London,
_c2011.
300 _av, 393 páginas 18 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aPreliminaries -- Functions between Euclidean Spaces -- Differentiation -- Inverse and Implicit Function Theorems -- Extrema -- Riemann Integration in Euclidean Space -- The General Stokes Theorem -- Solutions.
520 _aThis book provides a rigorous treatment of multivariable differential and integral calculus. Inverse and implicit function theorems based on total derivatives are given and the connection with solving systems of equations is included. There is an extensive treatment of extrema, including constrained extrema and Lagrange multipliers, covering both first order necessary conditions and second order sufficient conditions. The material on Riemann integration in n dimensions, being delicate by its very nature, is discussed in detail. Differential forms and the general Stokes' Theorem are explained in the last chapter. With a focus on clarity rather than brevity, this text gives clear motivation, definitions and examples with transparent proofs. Some of the material included is difficult to find in most texts, for example, double sequences in Chapter 2, Schwarz’ Theorem in Chapter 3 and sufficient conditions for constrained extrema in Chapter 5. A wide selection of problems, ranging from simple to challenging, is included with carefully written solutions. Ideal as a classroom text or a self study resource for students, this book will appeal to higher level undergraduates in Mathematics.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aVasudeva, Harkrishan Lal.
_eautor
_9305448
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780857291912
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-85729-192-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280491
_d280491