000 02912nam a22003735i 4500
001 280520
003 MX-SnUAN
005 20160429154027.0
007 cr nn 008mamaa
008 150903s2005 xxu| o |||| 0|eng d
020 _a9780817644369
_99780817644369
024 7 _a10.1007/0817644369
_2doi
035 _avtls000333487
039 9 _a201509030721
_bVLOAD
_c201404120633
_dVLOAD
_c201404090413
_dVLOAD
_y201402041112
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA370-380
100 1 _aSuzuki, Takashi.
_eeditor.
_9305493
245 1 0 _aFree Energy and Self-Interacting Particles /
_cedited by Takashi Suzuki.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2005.
300 _axiii, 366 páginas 7 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Nonlinear Differential Equations and Their Applications ;
_v62
500 _aSpringer eBooks
505 0 _aSummary -- Background -- Fundamental Theorem -- Trudinger-Moser Inequality -- The Green’s Function -- Equilibrium States -- Blowup Analysis for Stationary Solutions -- Multiple Existence -- Dynamical Equivalence -- Formation of Collapses -- Finiteness of Blowup Points -- Concentration Lemma -- Weak Solution -- Hyperparabolicity -- Quantized Blowup Mechanism -- Theory of Dual Variation.
520 _aThis book examines a nonlinear system of parabolic partial differential equations (PDEs) arising in mathematical biology and statistical mechanics. In the context of biology, the system typically describes the chemotactic feature of cellular slime molds. One way of deriving these equations is via the random motion of a particle in a cellular automaton. In statistical mechanics the system is associated with the motion of the mean field of self-interacting particles under gravitational force. Physically, such a system is related to Langevin, Fokker–Planck, Liouville and gradient flow equations. Mathematically, the mechanism can be referred to as a quantized blowup. This book describes the whole picture, i.e., the mathematical and physical principles: derivation of a series of equations, biological modeling based on biased random walks, the study of equilibrium states via the variational structure derived from the free energy, and the quantized blowup mechanism based on several PDE techniques.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817643027
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-8176-4436-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280520
_d280520