000 | 02912nam a22003735i 4500 | ||
---|---|---|---|
001 | 280520 | ||
003 | MX-SnUAN | ||
005 | 20160429154027.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2005 xxu| o |||| 0|eng d | ||
020 |
_a9780817644369 _99780817644369 |
||
024 | 7 |
_a10.1007/0817644369 _2doi |
|
035 | _avtls000333487 | ||
039 | 9 |
_a201509030721 _bVLOAD _c201404120633 _dVLOAD _c201404090413 _dVLOAD _y201402041112 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA370-380 | |
100 | 1 |
_aSuzuki, Takashi. _eeditor. _9305493 |
|
245 | 1 | 0 |
_aFree Energy and Self-Interacting Particles / _cedited by Takashi Suzuki. |
264 | 1 |
_aBoston, MA : _bBirkhäuser Boston, _c2005. |
|
300 |
_axiii, 366 páginas 7 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 |
_aProgress in Nonlinear Differential Equations and Their Applications ; _v62 |
|
500 | _aSpringer eBooks | ||
505 | 0 | _aSummary -- Background -- Fundamental Theorem -- Trudinger-Moser Inequality -- The Green’s Function -- Equilibrium States -- Blowup Analysis for Stationary Solutions -- Multiple Existence -- Dynamical Equivalence -- Formation of Collapses -- Finiteness of Blowup Points -- Concentration Lemma -- Weak Solution -- Hyperparabolicity -- Quantized Blowup Mechanism -- Theory of Dual Variation. | |
520 | _aThis book examines a nonlinear system of parabolic partial differential equations (PDEs) arising in mathematical biology and statistical mechanics. In the context of biology, the system typically describes the chemotactic feature of cellular slime molds. One way of deriving these equations is via the random motion of a particle in a cellular automaton. In statistical mechanics the system is associated with the motion of the mean field of self-interacting particles under gravitational force. Physically, such a system is related to Langevin, Fokker–Planck, Liouville and gradient flow equations. Mathematically, the mechanism can be referred to as a quantized blowup. This book describes the whole picture, i.e., the mathematical and physical principles: derivation of a series of equations, biological modeling based on biased random walks, the study of equilibrium states via the variational structure derived from the free energy, and the quantized blowup mechanism based on several PDE techniques. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817643027 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-8176-4436-9 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c280520 _d280520 |