000 03260nam a22003615i 4500
001 280526
003 MX-SnUAN
005 20160429154027.0
007 cr nn 008mamaa
008 150903s2007 xxu| o |||| 0|eng d
020 _a9780817646851
_99780817646851
024 7 _a10.1007/9780817646851
_2doi
035 _avtls000333611
039 9 _a201509030802
_bVLOAD
_c201404130458
_dVLOAD
_c201404092248
_dVLOAD
_y201402041115
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA21-27
100 1 _aKleiner, Israel.
_eeditor.
_9305502
245 1 2 _aA History of Abstract Algebra /
_cedited by Israel Kleiner.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2007.
300 _axvI, 168 páginas 24 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aHistory of Classical Algebra -- History of Group Theory -- History of Ring Theory -- History of Field Theory -- History of Linear Algebra -- Emmy Noether and the Advent of Abstract Algebra -- A Course in Abstract Algebra Inspired by History -- Biographies of Selected Mathematicians.
520 _aPrior to the nineteenth century, algebra meant the study of the solution of polynomial equations. By the twentieth century algebra came to encompass the study of abstract, axiomatic systems such as groups, rings, and fields. This presentation provides an account of the intellectual lineage behind many of the basic concepts, results, and theories of abstract algebra. The development of abstract algebra was propelled by the need for new tools to address certain classical problems that appeared unsolvable by classical means. A major theme of the approach in this book is to show how abstract algebra has arisen in attempts to solve some of these classical problems, providing context from which the reader may gain a deeper appreciation of the mathematics involved. Key features: * Begins with an overview of classical algebra * Contains separate chapters on aspects of the development of groups, rings, and fields * Examines the evolution of linear algebra as it relates to other elements of abstract algebra * Highlights the lives and works of six notables: Cayley, Dedekind, Galois, Gauss, Hamilton, and especially the pioneering work of Emmy Noether * Offers suggestions to instructors on ways of integrating the history of abstract algebra into their teaching * Each chapter concludes with extensive references to the relevant literature Mathematics instructors, algebraists, and historians of science will find the work a valuable reference. The book may also serve as a supplemental text for courses in abstract algebra or the history of mathematics.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817646844
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4685-1
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280526
_d280526