000 | 03641nam a22003495i 4500 | ||
---|---|---|---|
001 | 280533 | ||
003 | MX-SnUAN | ||
005 | 20160429154028.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2009 xxu| o |||| 0|eng d | ||
020 |
_a9780817649029 _99780817649029 |
||
024 | 7 |
_a10.1007/9780817649029 _2doi |
|
035 | _avtls000333669 | ||
039 | 9 |
_a201509030803 _bVLOAD _c201404130511 _dVLOAD _c201404092259 _dVLOAD _y201402041116 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
100 | 1 |
_aSchechter, Martin. _eautor _9300512 |
|
245 | 1 | 0 |
_aMinimax Systems and Critical Point Theory / _cby Martin Schechter. |
264 | 1 |
_aBoston : _bBirkhäuser Boston, _c2009. |
|
300 | _brecurso en línea. | ||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
500 | _aSpringer eBooks | ||
505 | 0 | _aCritical Points of Functionals -- Minimax Systems -- Examples of Minimax Systems -- Ordinary Differential Equations -- The Method Using Flows -- Finding Linking Sets -- Sandwich Pairs -- Semilinear Problems -- Superlinear Problems -- Weak Linking -- Fu?ík Spectrum: Resonance -- Rotationally Invariant Solutions -- Semilinear Wave Equations -- Type (II) Regions -- Weak Sandwich Pairs -- Multiple Solutions -- Second-Order Periodic Systems. | |
520 | _aMany problems in science and engineering involve the solution of differential equations or systems. One of most successful methods of solving nonlinear equations is the determination of critical points of corresponding functionals. The study of critical points has grown rapidly in recent years and has led to new applications in other scientific disciplines. This monograph continues this theme and studies new results discovered since the author's preceding book entitled Linking Methods in Critical Point Theory. Written in a clear, sequential exposition, topics include semilinear problems, Fucik spectrum, multidimensional nonlinear wave equations, elliptic systems, and sandwich pairs, among others. With numerous examples and applications, this book explains the fundamental importance of minimax systems and describes how linking methods fit into the framework. Minimax Systems and Critical Point Theory is accessible to graduate students with some background in functional analysis, and the new material makes this book a useful reference for researchers and mathematicians. Review of the author's previous Birkhäuser work, Linking Methods in Critical Point Theory: The applications of the abstract theory are to the existence of (nontrivial) weak solutions of semilinear elliptic boundary value problems for partial differential equations, written in the form Au = f(x, u). . . . The author essentially shows how his methods can be applied whenever the nonlinearity has sublinear growth, and the associated functional may increase at a certain rate in every direction of the underlying space. This provides an elementary approach to such problems. . . . A clear overview of the contents of the book is presented in the first chapter, while bibliographical comments and variant results are described in the last one. —MathSciNet | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817648053 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4902-9 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c280533 _d280533 |