000 03641nam a22003495i 4500
001 280533
003 MX-SnUAN
005 20160429154028.0
007 cr nn 008mamaa
008 150903s2009 xxu| o |||| 0|eng d
020 _a9780817649029
_99780817649029
024 7 _a10.1007/9780817649029
_2doi
035 _avtls000333669
039 9 _a201509030803
_bVLOAD
_c201404130511
_dVLOAD
_c201404092259
_dVLOAD
_y201402041116
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
100 1 _aSchechter, Martin.
_eautor
_9300512
245 1 0 _aMinimax Systems and Critical Point Theory /
_cby Martin Schechter.
264 1 _aBoston :
_bBirkhäuser Boston,
_c2009.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
500 _aSpringer eBooks
505 0 _aCritical Points of Functionals -- Minimax Systems -- Examples of Minimax Systems -- Ordinary Differential Equations -- The Method Using Flows -- Finding Linking Sets -- Sandwich Pairs -- Semilinear Problems -- Superlinear Problems -- Weak Linking -- Fu?ík Spectrum: Resonance -- Rotationally Invariant Solutions -- Semilinear Wave Equations -- Type (II) Regions -- Weak Sandwich Pairs -- Multiple Solutions -- Second-Order Periodic Systems.
520 _aMany problems in science and engineering involve the solution of differential equations or systems. One of most successful methods of solving nonlinear equations is the determination of critical points of corresponding functionals. The study of critical points has grown rapidly in recent years and has led to new applications in other scientific disciplines. This monograph continues this theme and studies new results discovered since the author's preceding book entitled Linking Methods in Critical Point Theory. Written in a clear, sequential exposition, topics include semilinear problems, Fucik spectrum, multidimensional nonlinear wave equations, elliptic systems, and sandwich pairs, among others. With numerous examples and applications, this book explains the fundamental importance of minimax systems and describes how linking methods fit into the framework. Minimax Systems and Critical Point Theory is accessible to graduate students with some background in functional analysis, and the new material makes this book a useful reference for researchers and mathematicians. Review of the author's previous Birkhäuser work, Linking Methods in Critical Point Theory: The applications of the abstract theory are to the existence of (nontrivial) weak solutions of semilinear elliptic boundary value problems for partial differential equations, written in the form Au = f(x, u). . . . The author essentially shows how his methods can be applied whenever the nonlinearity has sublinear growth, and the associated functional may increase at a certain rate in every direction of the underlying space. This provides an elementary approach to such problems. . . . A clear overview of the contents of the book is presented in the first chapter, while bibliographical comments and variant results are described in the last one. —MathSciNet
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817648053
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4902-9
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280533
_d280533