000 03649nam a22003735i 4500
001 280569
003 MX-SnUAN
005 20160429154029.0
007 cr nn 008mamaa
008 150903s2006 xxu| o |||| 0|eng d
020 _a9780817644406
_99780817644406
024 7 _a10.1007/0817644407
_2doi
035 _avtls000333490
039 9 _a201509030721
_bVLOAD
_c201404120633
_dVLOAD
_c201404090414
_dVLOAD
_y201402041112
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA299.6-433
100 1 _aKrantz, Steven G.
_eeditor.
_9304431
245 1 0 _aGeometric Function Theory :
_bExplorations in Complex Analysis /
_cedited by Steven G. Krantz.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2006.
300 _axiv, 314 páginas 41 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aCornerstones
500 _aSpringer eBooks
505 0 _aClassical Function Theory -- Invariant Geometry -- Variations on the Theme of the Schwarz Lemma -- Normal Families -- The Riemann Mapping Theorem and Its Generalizations -- Boundary Regularity of Conformal Maps -- The Boundary Behavior of Holomorphic Functions -- Real and Harmonic Analysis -- The Cauchy-Riemann Equations -- The Green’s Function and the Poisson Kernel -- Harmonic Measure -- Conjugate Functions and the Hilbert Transform -- Wolff’s Proof of the Corona Theorem -- Algebraic Topics -- Automorphism Groups of Domains in the Plane -- Cousin Problems, Cohomology, and Sheaves.
520 _aComplex variables is a precise, elegant, and captivating subject. Presented from the point of view of modern work in the field, this new book addresses advanced topics in complex analysis that verge on current areas of research, including invariant geometry, the Bergman metric, the automorphism groups of domains, harmonic measure, boundary regularity of conformal maps, the Poisson kernel, the Hilbert transform, the boundary behavior of harmonic and holomorphic functions, the inhomogeneous Cauchy–Riemann equations, and the corona problem. The author adroitly weaves these varied topics to reveal a number of delightful interactions. Perhaps more importantly, the topics are presented with an understanding and explanation of their interrelations with other important parts of mathematics: harmonic analysis, differential geometry, partial differential equations, potential theory, abstract algebra, and invariant theory. Although the book examines complex analysis from many different points of view, it uses geometric analysis as its unifying theme. This methodically designed book contains a rich collection of exercises, examples, and illustrations within each individual chapter, concluding with an extensive bibliography of monographs, research papers, and a thorough index. Seeking to capture the imagination of advanced undergraduate and graduate students with a basic background in complex analysis—and also to spark the interest of seasoned workers in the field—the book imparts a solid education both in complex analysis and in how modern mathematics works.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817643393
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/0-8176-4440-7
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280569
_d280569