000 03338nam a22003735i 4500
001 280574
003 MX-SnUAN
005 20160429154029.0
007 cr nn 008mamaa
008 150903s2008 xxu| o |||| 0|eng d
020 _a9780817646080
_99780817646080
024 7 _a10.1007/9780817646080
_2doi
035 _avtls000333576
039 9 _a201509030205
_bVLOAD
_c201404130452
_dVLOAD
_c201404092242
_dVLOAD
_y201402041114
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA370-380
100 1 _aTarantello, Gabriella.
_eautor
_9305588
245 1 0 _aSelfdual Gauge Field Vortices :
_bAn Analytical Approach /
_cby Gabriella Tarantello.
264 1 _aBoston, MA :
_bBirkhäuser Boston,
_c2008.
300 _brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aProgress in Nonlinear Differential Equations and Their Applications ;
_v72
500 _aSpringer eBooks
505 0 _aSelfdual Gauge Field Theories -- Elliptic Problems in the Study of Selfdual Vortex Configurations -- Planar Selfdual Chern–Simons Vortices -- Periodic Selfdual Chern–Simons Vortices -- The Analysis of Liouville-Type Equations With Singular Sources -- Mean Field Equations of Liouville-Type -- Selfdual Electroweak Vortices and Strings.
520 _aIn modern theoretical physics, gauge field theories are of great importance since they keep internal symmetries and account for phenomena such as spontaneous symmetry breaking, the quantum Hall effect, charge fractionalization, superconductivity and supergravity. This monograph discusses specific examples of gauge field theories that exhibit a selfdual structure. The author builds a foundation for gauge theory and selfdual vortices by introducing the basic mathematical language of the subject and formulating examples ranging from the well-known abelian–Higgs and Yang–Mills models to the Chern–Simons–Higgs theories (in both the abelian and non-abelian settings). Thereafter, the electroweak theory and self-gravitating electroweak strings are also examined, followed by the study of the differential problems that have emerged from the analysis of selfdual vortex configurations; in this regard the author treats elliptic problems involving exponential non-linearities, also in relation to concentration-compactness principles and blow-up analysis. Many open questions still remain in the field and are examined in this comprehensive work in connection with Liouville-type equations and systems. The goal of this text is to form an understanding of selfdual solutions arising in a variety of physical contexts. Selfdual Gauge Field Vortices: An Analytical Approach is ideal for graduate students and researchers interested in partial differential equations and mathematical physics.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817643102
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4608-0
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280574
_d280574