000 03734nam a22003855i 4500
001 280576
003 MX-SnUAN
005 20160429154029.0
007 cr nn 008mamaa
008 150903s2012 xxu| o |||| 0|eng d
020 _a9780817646936
_99780817646936
024 7 _a10.1007/9780817646936
_2doi
035 _avtls000333613
039 9 _a201509030802
_bVLOAD
_c201404130459
_dVLOAD
_c201404092248
_dVLOAD
_y201402041115
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA331.7
100 1 _aNapier, Terrence.
_eautor
_9305592
245 1 3 _aAn Introduction to Riemann Surfaces /
_cby Terrence Napier, Mohan Ramachandran.
264 1 _aBoston, MA :
_bBirkhäuser Boston :
_bImprint: Birkhäuser,
_c2012.
300 _axvii, 560 páginas 42 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aCornerstones
500 _aSpringer eBooks
505 0 _aPreface -- Introduction -- Complex analysis in C -- Riemann Surfaces and the L2 \delta-Method for Scalar-Valued Forms -- The L2 \delta-Method in a Holomorphic Line Bundle -- Compact Riemann Surfaces -- Uniformization and Embedding of Riemann Surfaces.-Holomorphic Structures on Topological Surfaces -- Background Material on Analysis in Rn and Hilbert Space Theory -- Background Material on Linear Algebra -- Background Material on Manifolds -- Background Material on Fundamental Groups, Covering Spaces, and (Co)homology -- Background Material on Sobolev Spaces and Regularity -- References -- Notation Index -- Subject Index.
520 _aThis textbook presents a unified approach to compact and noncompact Riemann surfaces from the point of view of the L² -method, a powerful technique used in the theory of several complex variables.  The work features a simple construction of a strictly subharmonic exhaustion function and a related construction of a positive-curvature Hermitian metric in a holomorphic line bundle, topics which serve as starting points for proofs of standard results such as the Mittag-Leffler, Weierstrass, and Runge theorems; the Riemann?Roch theorem; the Serre duality and Hodge decomposition theorems; and the uniformization theorem. The book also contains treatments of other facts concerning the holomorphic, smooth, and topological structure of a Riemann surface, such as the biholomorphic classification of Riemann surfaces, the embedding theorems, the integrability of almost complex structures, the Schönflies theorem (and the Jordan curve theorem), and the existence of smooth structures on second countable surfaces.  Although some previous experience with complex analysis, Hilbert space theory, and analysis on manifolds would be helpful, the only prerequisite for this book is a working knowledge of point-set topology and elementary measure theory. The work includes numerous exercises—many of which lead to further development of the theory—and  presents (with proofs) streamlined treatments of background topics from analysis and topology on manifolds in easily-accessible reference chapters, making it ideal for a one- or two-semester graduate course.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
700 1 _aRamachandran, Mohan.
_eautor
_9305593
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780817646929
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4693-6
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280576
_d280576