000 | 03734nam a22003855i 4500 | ||
---|---|---|---|
001 | 280576 | ||
003 | MX-SnUAN | ||
005 | 20160429154029.0 | ||
007 | cr nn 008mamaa | ||
008 | 150903s2012 xxu| o |||| 0|eng d | ||
020 |
_a9780817646936 _99780817646936 |
||
024 | 7 |
_a10.1007/9780817646936 _2doi |
|
035 | _avtls000333613 | ||
039 | 9 |
_a201509030802 _bVLOAD _c201404130459 _dVLOAD _c201404092248 _dVLOAD _y201402041115 _zstaff |
|
040 |
_aMX-SnUAN _bspa _cMX-SnUAN _erda |
||
050 | 4 | _aQA331.7 | |
100 | 1 |
_aNapier, Terrence. _eautor _9305592 |
|
245 | 1 | 3 |
_aAn Introduction to Riemann Surfaces / _cby Terrence Napier, Mohan Ramachandran. |
264 | 1 |
_aBoston, MA : _bBirkhäuser Boston : _bImprint: Birkhäuser, _c2012. |
|
300 |
_axvii, 560 páginas 42 ilustraciones _brecurso en línea. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_aarchivo de texto _bPDF _2rda |
||
490 | 0 | _aCornerstones | |
500 | _aSpringer eBooks | ||
505 | 0 | _aPreface -- Introduction -- Complex analysis in C -- Riemann Surfaces and the L2 \delta-Method for Scalar-Valued Forms -- The L2 \delta-Method in a Holomorphic Line Bundle -- Compact Riemann Surfaces -- Uniformization and Embedding of Riemann Surfaces.-Holomorphic Structures on Topological Surfaces -- Background Material on Analysis in Rn and Hilbert Space Theory -- Background Material on Linear Algebra -- Background Material on Manifolds -- Background Material on Fundamental Groups, Covering Spaces, and (Co)homology -- Background Material on Sobolev Spaces and Regularity -- References -- Notation Index -- Subject Index. | |
520 | _aThis textbook presents a unified approach to compact and noncompact Riemann surfaces from the point of view of the L² -method, a powerful technique used in the theory of several complex variables. The work features a simple construction of a strictly subharmonic exhaustion function and a related construction of a positive-curvature Hermitian metric in a holomorphic line bundle, topics which serve as starting points for proofs of standard results such as the Mittag-Leffler, Weierstrass, and Runge theorems; the Riemann?Roch theorem; the Serre duality and Hodge decomposition theorems; and the uniformization theorem. The book also contains treatments of other facts concerning the holomorphic, smooth, and topological structure of a Riemann surface, such as the biholomorphic classification of Riemann surfaces, the embedding theorems, the integrability of almost complex structures, the Schönflies theorem (and the Jordan curve theorem), and the existence of smooth structures on second countable surfaces. Although some previous experience with complex analysis, Hilbert space theory, and analysis on manifolds would be helpful, the only prerequisite for this book is a working knowledge of point-set topology and elementary measure theory. The work includes numerous exercises—many of which lead to further development of the theory—and presents (with proofs) streamlined treatments of background topics from analysis and topology on manifolds in easily-accessible reference chapters, making it ideal for a one- or two-semester graduate course. | ||
590 | _aPara consulta fuera de la UANL se requiere clave de acceso remoto. | ||
700 | 1 |
_aRamachandran, Mohan. _eautor _9305593 |
|
710 | 2 |
_aSpringerLink (Servicio en línea) _9299170 |
|
776 | 0 | 8 |
_iEdición impresa: _z9780817646929 |
856 | 4 | 0 |
_uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-8176-4693-6 _zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL) |
942 | _c14 | ||
999 |
_c280576 _d280576 |