000 03267nam a22003735i 4500
001 280597
003 MX-SnUAN
005 20160429154030.0
007 cr nn 008mamaa
008 150903s2011 xxk| o |||| 0|eng d
020 _a9780857297105
_99780857297105
024 7 _a10.1007/9780857297105
_2doi
035 _avtls000333968
039 9 _a201509030243
_bVLOAD
_c201404130608
_dVLOAD
_c201404092357
_dVLOAD
_y201402041136
_zstaff
040 _aMX-SnUAN
_bspa
_cMX-SnUAN
_erda
050 4 _aQA1-939
100 1 _aReventós Tarrida, Agustí.
_eautor
_9305636
245 1 0 _aAffine Maps, Euclidean Motions and Quadrics /
_cby Agustí Reventós Tarrida.
264 1 _aLondon :
_bSpringer London,
_c2011.
300 _axviii, 458 páginas 49 ilustraciones
_brecurso en línea.
336 _atexto
_btxt
_2rdacontent
337 _acomputadora
_bc
_2rdamedia
338 _arecurso en línea
_bcr
_2rdacarrier
347 _aarchivo de texto
_bPDF
_2rda
490 0 _aSpringer Undergraduate Mathematics Series,
_x1615-2085
500 _aSpringer eBooks
505 0 _aAffine Spaces -- Affinities -- Classification of Affinities -- Classification of Affinities in Arbitrary Dimension -- Euclidean Affine Spaces -- Euclidean motions -- Euclidean Motions of the Line, the Plane and of Space -- Affine Classification of Real Quadrics -- Orthogonal Classification of Quadrics -- Appendices.
520 _aAffine geometry and quadrics are fascinating subjects alone, but they are also important applications of linear algebra. They give a first glimpse into the world of algebraic geometry yet they are equally relevant to a wide range of disciplines such as engineering. This text discusses and classifies affinities and Euclidean motions culminating in classification results for quadrics. A high level of detail and generality is a key feature unmatched by other books available. Such intricacy makes this a particularly accessible teaching resource as it requires no extra time in deconstructing the author’s reasoning. The provision of a large number of exercises with hints will help students to develop their problem solving skills and will also be a useful resource for lecturers when setting work for independent study. Affinities, Euclidean Motions and Quadrics takes rudimentary, and often taken-for-granted, knowledge and presents it in a new, comprehensive form. Standard and non-standard examples are demonstrated throughout and an appendix provides the reader with a summary of advanced linear algebra facts for quick reference to the text. All factors combined, this is a self-contained book ideal for self-study that is not only foundational but unique in its approach.’ This text will be of use to lecturers in linear algebra and its applications to geometry as well as advanced undergraduate and beginning graduate students.
590 _aPara consulta fuera de la UANL se requiere clave de acceso remoto.
710 2 _aSpringerLink (Servicio en línea)
_9299170
776 0 8 _iEdición impresa:
_z9780857297099
856 4 0 _uhttp://remoto.dgb.uanl.mx/login?url=http://dx.doi.org/10.1007/978-0-85729-710-5
_zConectar a Springer E-Books (Para consulta externa se requiere previa autentificación en Biblioteca Digital UANL)
942 _c14
999 _c280597
_d280597